
ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

7

Marek Bazan
Wrocław University of Science and Technology, Faculty of Electronics, Department of
Computer Engineering, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
marek.bazan@pwr.edu.pl

Janiczek Tomasz
Wrocław University of Science and Technology, Faculty of Electronics, Department of
Control Systems and Mechatronics ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
tomasz.janiczek@pwr.edu.pl

Kurda Rafał
Wrocław University of Science and Technology, Faculty of Electronics, Scientific Circle
CyberTech, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland

Matusiak Kamil
Wrocław University of Science and Technology, Faculty of Electronics, Scientific Circle
CyberTech, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland

Sak Łukasz
Wrocław University of Science and Technology, Faculty of Electronics, Scientific Circle
CyberTech, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland

An algorithm for vehicle identification
by on-board Bluetooth devices
exploiting Big-Data tools

Abstract

Nowadays, vehicles are equipped with various on-board devices that work in Bluetooth technology
and log on to the ITS infrastructure whenever passing by Bluetooth readers. The location of Bluetooth
readers is an important issue for travel time prediction in urban areas. Bluetooth technology is used
to enhance travel time prediction accuracy and is additional to vehicle license number identification.
The algorithms for travel time prediction are used by such technologies e.g., TRAX to offer the road
user an alternative route to traverse the most congested regions of the city in the most efficient way.
In this paper we present the implementation of the algorithm that enables us to match Bluetooth
on-board devices, and also cell phones that are mounted or are just in vehicles of road users. Since

s. 7-21

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

8

the ITS is a source of an enormous and increasing amount of data for this purpose we engage Big
Data tools such as Apache HaDoop and Apache Spark. To build Map-Reduce tasks we use Hive-SQL.
The algorithm is tested on ITS data from the city of Wroclaw. The results of the algorithm may be
used to locate stolen vehicles.

Keywords

Automatic number plate recognition, Bluetooth devices, HaDoop, Spark, user identification

Introduction

Automatic number plate recognition (ANPR) systems are the main component of the travel
time estimation systems within intelligent transportation systems. The most effective
methods of recognizing license plate numbers consist of the following three stages:
1) license plate location within the image,
2) license plate image normalization,
3) optical character recognition.
The broad survey of the mathematical algorithms exploited in the above stages can be
found in [1] and references therein.
The travel time estimation methods that are employed in intelligent transportation
systems are based on the appropriate placements of the ANPR cameras in the city along
its main arteries c.f. [2] . That allows us to propose the alternative routes for the quickest
traversing of the city c.f. [3] – for the alternative routes travel time estimation quality.
Apart from travel time estimation, ANPR cameras in the ITS system can also be used
for congested traffic prediction as presented in [4] .
Bluetooth is one of the most popular technologies that nowadays allows us to establish
a vehicle to infrastructure ad-hoc networks (VANETs) [5] that enhance travel time
estimation and prediction capabilities of intelligent transportation systems c.f. [10] . In
depth analysis of the error that can be encountered in travel time estimation may be
found in [7],[9] and references therein.
VANETs connected to the GPU servers within the infrastructure servers may also
be used for a fastest path search, based on congestion measurement by an ad-hoc
network Bluetooth gate software c.f. [6] .
Optimal locations of Bluetooth readers in an urban environment so that travel time
prediction is as accurate as possible were recently studied in [8] .
In this paper we present an off-line data-mining algorithm of license plate numbers
matching with the MAC addresses of on-board Bluetooth devices exploiting Big Data
tools. To our knowledge this is the first publication of such an algorithm, not only in
Big Data, but in the general data-mining field. With the exception of the presentation of
the algorithm the purpose of this paper is also to show a track of the development of
its implementation in Big Data ecosystems. Big Data analysis is nowadays increasing
in popularity since its tools allow the processing of an enormous amount of data both
in real time [11], [12] as well as off-line analytics [13], [14]. Since transportation systems
are sources of a quite large amount of data, it is normal that they are a potential field of
Big Data analysis tools applications – for an extensive review of what has already been
researched in transportation related to Big Data, see [15].
Summarizing a contribution of this paper to the field of transportation telematics: in
the context of the literature of the subject of vehicle identification up to our knowledge
it is a first paper that considers deanonimization of Bluetooth devices and matching
them with license plate numbers in the ITS systems containing Bluetooth gates and
ANPR systems.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

9

The remainder of the paper is of the following structure. In the second section we
present a general idea of the matching algorithm together with the data formats that
are needed. In the third section four implementations of the algorithm are presented.
Codes of the first three implementations are in python and in Transact SQL whereas the
third one is in Apache Spark. The first two implementations are characterized by different
execution performance and are tools for checking if there is a necessary dependence
in the data sets that we analyzed for tests. In this section the implementation process
of the corresponding Map Reduce algorithm is also discussed. In the fourth section we
present results of the execution of the above implementations on ITS data from the city
of Wroclaw (Poland). In this section we show the placements of ANPR cameras as well as
Bluetooth readers in the city, and establish the conditions necessary for the algorithm
to work. As results we sketch the number of matches as well as execution times. Finally
we conclude the paper depicting possible areas of the application of the algorithm.

1.	 General idea of a matching algorithm

An algorithm relies on the fact that there are two separate tables in the ITS system that
store result data from ANPR cameras and Bluetooth gate readers located in various
places of the city. The location of ANPR cameras and Bluetooth readers are designed so
that travel time estimation for VMS is possible [8]. The crucial requirement is that there
are points in space where ANPR cameras are close to Bluetooth gates and are placed
on main arteries, so that the vehicles driving the same way are caught on both of them.
Location of the cameras and Bluetooth gates in the city of Wrocław can be seen in Fig. 1.

2. Implementations	

2.1 Data preparation

Data preparation is a very important stage in the processing of big data. It allows us
to save time performing algorithms especially for sequence implementations. In this
section we present a preprocessing approach in the form of the discussion on the
python implementation.

Steps of the algorithm:
I. Read data
II. Sort data:

- first by Bluetooth MAC address
- next for every MAC address by registration scanning time

III. Main function:
1. Initialize variable
2. Main for loop iterate all elements in data plus one for the last iteration. Next,
create a condition to the last iteration (line 52-55).

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

10

Fig. 1. Locations of cameras and Bluetooth scanners in the city of Wrocław. Purple Star – position
of Bluetooth scanner (11), Blue Camera – point camera (26). In Wroclaw there are more points with
cameras, but only those are chosen which are near Bluetooth scanner locations.

2.1. Main if. (lines 58-75)

This condition is fulfilled when the MAC address and Bluetooth ID was the same and it
is not the last iteration. It is in a situation if between the next two rows in the base, the
scanning time is longer than 15 minutes and the current cumulative time is longer than
30 minutes (this was probably a static transmitter close to a Bluetooth scanner or a very
long traffic jam) then save indexes to delete data.

2.2. Main else: (lines 77-89)

If MAC address or Bluetooth ID are changed (new MAC address to check or if a car was
at another Bluetooth scanner), but the previous cumulative time was longer than 30
minutes, then save indexes to delete data.
IV) Print how many elements will deleted from data (line 91-92)
V) Return list with indexes to deleted data. (line 94)
VI) Removing unnecessary data (indexes to delete are in return list form Main Function)
VII) Save data after preparation

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

11

Code snippet 1.: Data preprocessing algorithm in python. A procedure to delete data related with
a local Bluetooth transmitter or if parked vehicles transmit a Bluetooth signal more than 30 minutes
near one Bluetooth scanner (a very long traffic jam or vehicle parked near a Bluetooth point).

Results:
All elements in base: 10 653 923
Delete elements:
c1 = 4 092 735
c2 = 925 91
Saved elements: 5 635 271
The algorithm deleted more than 45% of the data from the file.
Execute algorithm time: 26 minutes 44 secs (algorithm working on one thread)
Processor: Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz (8 CPUs),
Memory: 8192MB RAM.

2.3. SQL	

SQL implementation presented in this section was designed for a Microsoft SQL Server
environment using Transact-SQL. The main part of the algorithm is presented in Code
snippet 1.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

12

Code snippet 2: Core fragment of SQL implementation. [own study]

Implementation is based on three tables:
1.	 Registrations – contains data from cameras capturing car registrations.
2.	 Bluetooths – contains data from Bluetooth device detectors.
3.	 Reg_Bl – reference table, contains camera identifiers? matched with Bluetooth

detectors located in the same area. Created specifically to solve the problem
described in this paper.

Relations amongst tables mentioned above are shown in Fig. 2.
Zero or many relations between the tables arise from a few facts:

−− not all cameras, same as not all Bluetooth devices detectors, take part in the
calculations, because not all of them have their pair – camera and Bluetooth devices
detector become a pair only if they are in close proximity to one another;

−− it is not always the case that Registrations or Bluetooth tables must have records for
all cameras or Bluetooth devices detectors specified in Reg_Bl table;

The first step of the algorithm, represented in Code snippet 1 inserted above by
subqueries in FROM clause (lines 3-11), is to get all distinct sets of vehicle license plate,
Bluetooth adapter MAC address and the time of license plate number capture. Each set
must meet the following conditions:
The camera that captures a license plate number and detector that captures Bluetooth
devices must match each other (Camera_Id and Detector_Id creates a pair, which is
saved in Reg_Bl table).
The time when the license plate number was captured (Time_Reg) and the time
when the Bluetooth device was recorded (Time_Bl) must meet the specific condition
presented in Code snippet 1 in lines 9-10 and 20-21. In the described implementation the

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

13

condition is that the difference between the Time_Reg and Time_Bl cannot be greater
than 5 minutes. This condition should be adjusted to a given location taking into account
variables like traffic or average distance between the cameras and Bluetooth detectors.
The last part of this step is the GROUP BY clause used to deduplication of the results,
in case the same Bluetooth device address was captured many times in a given period .

Fig. 2. A fragment of database infrastructure, identifiers important for the implementation of the
algorithm. The descriptio covers only attributes required to demonstrate the implementa-tion. [own
study].

The second step of the algorithm is to exclude the results received only during one
way through many measurement points. This approach is necessary in case when
the same group of vehicles drives through many measurement points in similar time.
Cases like this can cause the same set of results for more than one vehicle, which is an
undesirable situation. To achieve this, results from step 1 are joined with eachother,
which is represented in Code snippet 1 the above inserted by the JOIN clause (lines
13-27), and get into further calculations only these results that meet the following
condition:
1.	 vehicle license plate number and Bluetooth device MAC address is the same,
2.	 time between captures of subsequent results is greater than 360 minutes.

The third and final step of the algorithm is to group the results received for each pair
of vehicle license plate number and Bluetooth device MAC address together. This part
is represented in the inserted above Code snippet 1 by lines 1, 28, and 29. As the final
result of the algorithm we get a car registration with a corresponding Bluetooth device
MAC address and with a count of occurrences. An important issue in this step is the
clause HAVING, located in line 29. The number at the end of the line is responsible
for the number of occurrences that specific set of results must have to be in the final
results. The higher the number the more the results are dependable, but there is one
thing that must be borne in mind - results with a lower number of occurrences than
this will never get to the final results, e.g., when the HAVING COUNT is set to greater
than 20, there will not be in the final results cases where a vehicle license plate number
occurred 19 times and always for these 19 times a specific Bluetooth device for this
car registration was found, but there will be in the final results a case where a vehicle
license plate number occurred 1000 times and only 20 times for all these occurrences
a specific Bluetooth was found.

Possible ways of optimization of the presented algorithm are:
1.	 Reducing the amount of time and memory required for processing by reducing the

source volume of data in the Registrations and Bluetooths tables to only those
that Camera_Id / Detector_Id which match any Camera_Id / Detector_Id specified
in Reg_Bl table.

2.	 Reducing the amount of memory but increase the amount of time required for
processing by utilization of cursors to store all distinct vehicle license plate numbers
and process them row by row.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

14

2.4. Python implementation

Python implementation presented in this section was written in Python 2.7.
Before using the algorithm we need to sort registration numbers and Bluetooth data
by time.

First step in the algorithm is to prepare data:
1.	 Choose start and end time (year-month-day hour:minutes:seconds).
2.	 Sort data:

−− License plate number data by a registration number
−− Bluetooth data by Global_ID (location of the Bluetooth scanner)

3.	 Load into list():
−− Registration file - Registration numbers, Global Camera ID, acquisition time
−− Bluetooth file – MAC Bluetooth address, Global Bluetooth ID, acquisition time

4.	 Delete duplicated registrations using set (registration)
5.	 Create a dictionary where the key is Global Camera ID and value is list of a near

Bluetooth scanner (maximum 2 km).

The main part of the algorithm, matching a vehicle license plate number with a
Bluetooth device is presented in Code snippet 3.

Code snippet 3: Python implementation of the matching algorithm,

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

15

1.	 Iterate over license plate numbers. (line129)
2.	 Count number of occurrences of every registration number. (line131)
3.	 If registration number occurred only once, omit it. (line136-137)
4.	 If the detected time is greater than the exact value given as a parameter then omit

it. This solution is for a situation whereby two or more cars are going in the same
direction at the same time. (line139-145)

5.	 Calculate the window time +/- a few minutes (Camera and scanner Bluetooth are in
different places) (line147)

6.	 Load Bluetooth data and match it with the registration number:
−− Start Loop: For each specified camera get all Bluetooth points instances:
−− + Get a first index MAC address which is appropriate to a Global Bluetooth ID

(line152)
−− + Count how many MAC addresses are in the appropriate Global Bluetooth ID

(line153)
−− + Execute binary search algorithm (data was sorted by time) for the time window

(lines155-158)
−− + Save data to “set” structure (line159)
−− End loop
−− Append list of devices from one checkpoint to the list of “set” structures (line161)
−− Calculating common part of all checkpoints using intersection on “set” structure

(lines 173-174)

Advantages:
−− The algorithm is adapted to use multiprocessing/multithreading - it allows usage

of parallel computing which speeds up execution time
−− Calculating the common part of all records is expected to provide high

accuracy
Disadvantages:

−− If Bluetooth is turned off once or more while a car is passing the Bluetooth
checkpoint, or if a car doesn’t pass by the nearest Bluetooth scanner, then this
algorithm won’t work.

Python vs. SQL algorithms

Result:
Compare results based on data from 14-15.05.2015.
Data source: ITS Wrocław

Before comparing results the following command was executed:
uniq -u - only print unique lines,

If one Bluetooth device was matched to many different registration numbers, then all of
the results with this Bluetooth device are removed – the algorithm cannot decide which
result is the correct one. This situation may occur if some Bluetooth device is constantly
detected at one of the Bluetooth stations.

SQL:
−− Execute time: 38h 31m 25s
−− Number of registration: 1385
−− Number of MAC address Bluetooth: 1784

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

16

Python:
−− Execute time: 3h 40m 31s
−− Number of registration: 2062
−− Number of MAC address Bluetooth: 2819

2.5. Apache Spark implementation

There are a few dozen cameras and Bluetooth receivers stationed by the roadside in
Wroclaw.
These cameras are capable of detecting a car and reading its registration plate number.
Receivers try to identify numbers of devices passing under.
Data is collected and stored by a centralized system administered by the municipality
of Wroclaw. The authors of this publication received a slice of data that was gathered
within several days in 2014. Provided records were saved in CSV files that contained
a few million rows. Camera data contained only fully registered journeys from point
A to B. Therefore it contained two places, two timestamps and id number, and additional
information like input time. Bluetooth data contains timestamp, id, type, and input time.
The task was to find cars and Bluetooth devices that occur. I have implemented the
following algorithm:

−− Select cameras that are near Bluetooth receivers
−− For every capture of car select all Bluetooth devices that were present at the nearby

location and time.
−− For every vehicle create a table that contains Bluetooth devices and number of

times it was present near a vehicle.
−− Similarly, create a table for every Bluetooth device that contains car numbers that

occurred with it, and store the number of times it happened.
−− For every vehicle license plate number select from its table the most often appearing

Bluetooth. Check if the current car number is also the most often appearing in the
table created for this Bluetooth address.

Such an algorithm is resistant to all imperfections of real world data and fulfils its task
specification:
Sometimes a vehicle plate number or wireless device may not be detected when
the other is. Especially if the vehicle is traveling very fast, license plates are dirty,
or the phone is turned off. Periodically the vehicle owner may switch to a different
vehicle or walk. When a person uses public transport, we cannot claim that there is
a connection.
We have implemented the above algorithm in a python and Hadoop Map-Reduce
framework. However, for both implementations we had to slightly modify the above
method of proceeding. First of all it does not fit the Map-Reduce framework.

Modified algorithm
Map phase:
For every record create key, value pair. The Key should be a union of timestamp, and
generalized place of occurrence. The Value should be identification number of the car
or device.
At this stage the time of occurrence should be modified. The precise time of occurrence
is of little interest. Therefore, time in seconds should be divided without leaving
a remainder by a small period of time. I use 60 seconds. This is enough to check if co
occurrence happens.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

17

Reduce Phase:
The result of the Map phase is sorted to efficiently find a list of all occurrences at a given
place and time.
The reversed result from the map should be sorted to find all occurrences of a given id.
Then for every occurrence of an id find all ids that occurred at the same time and place.
Add all resulting lists for an id and the calculate frequency statistic. Save as a result
several highest results. It is impossible to save a full list as this would require too much
memory.

Parallel python implementation:
Map phase:
Files are divided into sublists containing one million records from the CSV file. Each
is put onto a job queue. Then a few threads (the number depends on the machine)
process these sublists. The result is a numpy??? array of 3 element tuple?? (place, time
period, id number).
Sort Phase:
The resulting lists are joined.
From this we create two collections.
List sorted by id number -- for an efficient retrieval of all occurrences of id.
Dictionary where key is tuple(time, place) and key all id numbers that occurred there.
Reduce phase:
Loop through the first list and create a sublist with all occurrences (time, place) of an
ID number. For every element on this list retrieve all co-occurring ids in the created
dictionary. Join all the results and create ranging of frequency. Save several of the
biggest results. Look for all id numbers that co occur with other ids and the reverse
relation is similar.
Results:
This implementation performed exceptionally well. Python is considered by many to
be a slow language. But the right algorithm with Numpy performed very fast. 15 million
records and 1.1 Gb of data was processed on a laptop in 10 minutes! CPU utilization was
around 70% and memory usage topped at 6 Gb.
Hadoop Implementation
Implementation was similar to the python one. The only difference is that parts of the
sort phase that are not automatic are moved to the reduce phase (see Code Snippets 4,
5, 6 for detailed implementation).

Code snippet 4: The first stage of the Hadoop implementation.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

18

Code snippet 5: The second stage of the Hadoop implementation.

Code snippet 6: The third stage of the Hadoop implementation.

Results:
Speed was similar to python implementation. The map phase performed much faster
as CVS implementation is faster and a job scheduling algorithm is better (no locks which
are required in python, and better management of jobs). However, the reduce phase
performed better on Numpy. Nonetheless, Hadoop is much more scalable for bigger
data sets.

3. Numerical tests

The setup of the numerical experiment is the following: for comparison of the execution
time and results calculated with the implemented algorithms the calculations were
performed for data from two working days from May 2014 registered in the Wrocław
Intelligent Transportation System. The interval for data was limited in this manner since
for sequential algorithms, calculations within longer intervals were very long. For the
whole processing 1 580 628 Bluetooth records were entered and 665 547 containing
license plate numbers from two days. After the execution of the data preprocessing
procedure there remained 796 580 Bluetooth records.

Python sequential implementation
The output of this algorithm is a set of pairs (license plate number, Bluetooth MAC
number), which were matched on condition that the Bluetooth MAC was registered
within a +-5 minutes window around the registration of the license plate number. The
next registration of the passing had to occur within the time distance of at least 2 hours.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

19

Such an approach eliminates problems of ambiguity of the match of the Bluetooth
MACs to vehicles driving in columns through several Bluetooth gates. In this approach
the vehicle needs to occur at least 2 times.
A given pair (license plate number, Bluetooth MAC number) enters the results on
condition that the Bluetooth MAC occurred exactly in all runs. It means that if the
vehicle was going at least those without the Bluetooth device it was not added to the
final results.

Transact-SQL implementation
The output of this algorithm is a set of pairs (license plate number, Bluetooth MAC
number), which were matched on condition that the Bluetooth MAC was registered
within a +-5 minutes window around the registration of the license plate number. The
next registration of the passing had to occur within the time distance of at least 2 hours.
Such an approach eliminates problems of ambiguity of the match of the Bluetooth
MACs to vehicles driving in columns through several Bluetooth gates. These are the
same conditions as for the Python sequential implementation.
The difference is that a vehicle needs to occur a prescribed in the algorithm number of
times (here we assumed 2).
A given pair (license plate number, Bluetooth MAC number) needs to occur at least
twice, but does not need to occur in all runs by a Bluetooth gate. Therefore there are
differences in the results.

Python parallel implementation and Spark implementation
The output of these algorithms is a set of triples (license plate number, Bluetooth MAC
number, a number of merit). The number of merit to detect a match is a product of
normalized incidence of occurrence of a Bluetooth MAC number in a prescribed 10
minute time window on a Bluetooth gate with a given license plate number multiplied
by a normalized incidence of occurrence of a license plate number in that time window
with a given MAC number. With a use of threshold value one can detect
matches. Both these algorithms performed very fast. For instance for data from
14 days (other than those used for the algorithm comparison) performed within 10
minutes.
Results of the performance of all three implementations are presented in Table 1. This
table shows performance times, number of matches found as well the percentage of
the compatibility between three implemented approaches.

Table 1.	 Results of the performance of implementation of three approaches to license plate
numbers and Bluetooth MACs matching.

Algorithm Number
of matches

Performance
time

Compatibility
of results with

Python Seq.

Compatibility
of results with

T-SQL
Seq. Python 18425 10:39:12 -- 60%
Transact SQL 187588 20:09:33 60% --
Par. Python
with number of merit
on the level 0.01

16151 00:10:00 2% 12%

Spark with number of
merit on the level 0.03 191 00:10:00 15% 68%

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

20

Conclusion

In this paper we presented four algorithms for matching Bluetooth devices with
license plate numbers within ITS data that operates ANPR cameras and Bluetooth
gates. The first algorithm was written in Python and the second one was in Transact-
SQL. Both are sequential algorithms. The latter two algorithms are parallel – one
implemented in python using multiprocessing and the second one using Apache
Spark. Parallel algorithms gave the same results with the same parameters setup of
number of merits used. The highest number of matches was found by Transact SQL,
the next was sequential Python implementation, afterwards was the parallel Python
implementation, the smallest number of matches was obtained by the implementation
on Apache HaDoop. As seen from Table 1 concerning the compatibility level reaching
up to 68%, the presented algorithms are three different approaches to matching of
Bluetooth devices with license plate numbers.
Sequential algorithms uncovered many more matches, however – by using parallel
algorithms we find that they are less reliable. Parallel algorithms are also far more
efficient.
Presented parallel algorithms may be used to online matching of Bluetooth devices
with vehicles. Such matches may allow the identification of car/gasoline thefts. Vehicles
that took part in the crime may be identified by their Bluetooth device if they were
matched beforehand by the proposed method.

Acknowledgements

The work presented in this paper was partially financed from grant 0401/0230/16.

References

[1] 	 Kolour, H. S., Shahbahrami, A.: An Evaluation of License Plate Recognition Algorithms. International
Journal of Digital Information and Wireless Communications (IJDIWC) 1(1) in The Society of Digital
Information and Wireless Communications, (ISSN 2225-658X), pp. 247-253, 2011.

[2] 	 Kazagli, E.: Arterial Travel Time Estimation from Automatic Number Plate Recognition Data,
Ph.D. thesis., Department of Transport Science, Division of Traffic and Logistics, Royal Institute of
Technology, September 2012, Stockholm.

[3] 	 Bazan, M., Bożek, M., Ciskowski, P. Halawa, K., Janiczek, T. Kozaczewski, P., Rusiecki, A.: Some
aspects of Intelligent Transport System auditing. Archives of Transport System Telematics,
Volume 8, Issue 3, 2015, pp. 3-8.

[4] 	 Ciskowski, P,. Janik, A., Bazan, M., Halawa, K., Janiczek, T., Rusiecki, A.: Estimation of Travel Time in
the City Based on Intelligent Transportation System Traffic Data with the Use of Neural Networks.
Dependability Engineering and Complex Systems: Proceedings of the 11-th International
Conference on Dependability and Complex Systems DepCos – ROLCOMEX, Ed. by W. Zamojski et.
al., June 2016, Poland.

[5] 	 Ma, Y., Chowdhury, M. Sadek, A., Jeihani, M.: Integrated Traffic and Communication Performance
Evaluation of an Intelligent Vehicle Infrastructure Integration (VII) System for Online Travel-Time
Prediction, IEEE Trans. on Intelligent Transportation Systems, 13(3), 2012, pp. 1369 – 1382.

[6] 	 Jindal, V., Bedi, P.: Reducing Travel Time in VANETs with Parallel Implementation of MACO
(Modified ACO). In: Snášel V., Abraham A., Krömer P., Pant M., Muda A. (eds) Innovations in Bio-
Inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 424.
Springer, 2016, Cham.

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY TECHNICZNEJ W KATOWICACH
ISSN 2082-7016; e-ISSN 2450-5552� 2017, nr 9

21

[7] 	 Wang, Y., Malinovskiy, Y., Wu, Y.-J., Lee, U. K.: Error modeling and analysis for travel time data
obtained from Bluetooth MAC address matching, Research Report, Agreement T4118 Task 46,
2011-01, Washington State Transportation Center (TRAC), December 2011.

[8] 	 Park, J. H.: Optimal Number and Location of Bluetooth Sensors Considering Stochastic Travel
Time Prediction, The 56th Annual Transportation Research Forum, March 2015.

[9] 	 Wieck, M.: Use of Bluetooth Based Travel Time Information for Traffic Operations. In: ITS America,
the 18th World Congress on Intelligent Transport Systems, Orlando, Florida, United States,
October 16-18, 2011.

[10] 	 Hainen, A., Wasson, J., Hubbard, S., Bullock, D. M.: Estimating Route Choice and Travel Time
Reliability with Field Observations of Bluetooth Probe Vehicles.Transportation Research Record
Journal of the Transportation Research Board 2256(-1), December 2011, pp. 43-50.

[11] 	 Senkar, B., Karau, H.: Fast Data Processing with Spark - Second Edition, ISBN-13: 978-1784392574,
Packt Publishing, 2013.

[12] 	 Wadkar, S., Siddalingaiah, M.: Building Real-Time Systems Using Hbase, in Pro Apache Hadoop,
ISBN: 978-1-4302-4863-7, 2014, pp. 293-323.

[13] 	 Perera, S.: Instant MapReduce Patterns – Hadoop Essentials How-to Progressing, Packt Publishing,
ISBN 139781782167709, 2013.

[14] 	 Karanth, S.: Mastering Hadoop, Packt Publishing, ISBN-13: 9781783983643, 2014.
[15] 	 International Transport Forum, CPB, OECD, Big Data and Transport: Understanding and Assessing

Options, 2015.

ALgorYtm identYfikacji pojazDÓW
poPRZEZ urządzenia Bluetooth
wykorzystujący narzędzia Big Data

Streszczenie

Współczesne pojazdy wyposażane są w wiele różnych urządzeń Bluetooth, które logują się do
infrastruktury ITS za każdym razem gdy przejeżdżają one w zasięgu czytników Bluetooth. Położenie
czytników Bluetooth jest zagadnieniem istotnym dla metod predykcji czasu przejazdu w regionach
zurbanizowanych. Technologia Bluetooth jest użyta do poprawy dokładności czasu przejazdu i jest
uzupełnieniem dla identyfikacji pojazdów po numerach rejestracyjnych. Algorytmy do predykcji
czasu przejazdu są używane do proponowania użytkownikom trasy alternatywnej w celu przejazdu
przez najbardziej zatłoczone regiony miasta w sposób najbardziej efektywny. W artykule jest
prezentowana implementacja algorytmu, który pozwala połączyć urządzenia Bluetooth i telefony
znajdujące się w pojazdach z samymi pojazdami. Do tego celu angażuje się narzędzia Big Data
takie jak Apache HaDoop i Apache Spark. Do zbudowania zadań Map-Reduce używa się Hive-SQLa.
Algorytm był testowany na danych z wrocławskiego ITS. Wyniki działania algorytmu mogą być użyte
do lokalizowania skradzionych pojazdów.

Słowa kluczowe

HaDoop, Spark, identyfikacja użytkownika

