PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of austenitic interlayer on the properties of stellite padding welds after impact-hardening

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu międzywarstwy austenitycznej na właściwości napoin stellitowych utwardzonych udarowo
Języki publikacji
EN
Abstrakty
EN
Stellites (Co-Cr-W-C) are the specific group of coating materials used for surface modification of the engineering materials and for remanufacturing. The aim of the paper was to research the influence of austenitic (308LSi) interlayer on hardening rate of stellite 1 and stellite 6 after impact hardening. The samples have been cladded by TIG welding method with interlayer and without. Before impact hardening the samples have been visually and penetrant non-destructive tested. The samples after impact hardening have been tested by metallographic and Vickers hardness methods. The highest impact hardening effect have been revealed for coatings deposited with interlayer. The highest impact hardening effect was achieved for the padding welds produced with the interlayer, i.e. for stellite 1 (increased by 29.8%) and stellite 6 (increased by 42.7%). The hardening of the coating samples deposited without interlayer was lower and amounted to stellite 1 (increased by 13.7%) and stellite 6 (increased by 29.8%) respectively. The highest hardness values were obtained for impact-hardened cladded welds without the use of an interlayer (stellite 1; 790 HV0.1 and stellite 6; 732 HV0.1). The use of an interlayer reduces the hardness of the stellite coating while increasing the susceptibility to hardening and plastic deformation of the produced coating.
PL
Stellity (Co-Cr-W-C) stanowią grupę materiałów stosowanych do napawania produkcyjnego i regeneracyjnego. Celem pracy było zbadanie wpływu międzywarstwy austenitycznej (308LSi) na stopień umocnienia się napoin stellitowych (stellit 1 i stellit 6), poddanych działaniu obciążeń udarowych. Próbki napawano metodą TIG z zastosowaniem międzywarstwy oraz bez udziału międzywarstwy. Po przeprowadzeniu badań wizualnych i penetracyjnych próbki zostały poddane utwardzeniu udarowemu. Wykonano badania metalograficzne oraz badania mikrotwardości sposobem Vickersa. Największe utwardzenie udarowe uzyskano dla napoin wytworzonych z międzywarstwą, tj. dla stellitu 1: 29.8% i stellitu 6: 42.7%. Utwardzenie próbek napawanych bez międzywarstwy było niższe i wynosiło kolejno dla stellitu 1: 13.7% i stellitu 6: 29.8%. Najwyższe wartości twardości uzyskano dla napoin utwardzanych udarowo bez zastosowania międzywarstwy (stellit 1; 790 HV0,1 i stellit 6; 732 HV0,1). Zastosowanie międzywarstwy obniża mikrotwardość powłoki stellitowej jednocześnie zwiększając podatność do umocnienia i odkształcenia plastycznego wytworzonej powłoki.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
  • Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, Lublin, Poland
autor
  • Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, Lublin, Poland
  • Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Department of Computer Modelling and Metal Forming Technologies, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Bibliografia
  • [1] Park C.-K., Lee J.-H., Kang N.-H., Chun E.-J., Correlation between Microstructure and Tribological Properties of Laser Surface Heat-Treated Stellite Coatings. Coatings Internet, 2020, Vol. 10(5), 433.
  • [2] Simunovic K., Havrlisan S., Saric T., Vukelic D., Modeling and Optimization in Investigating Thermally Sprayed Ni-Based Self-Fluxing Alloy Coatings: A Review. Materials, 2020, Vol. 13(20), 4584.
  • [3] Singh J., Kumar S., Mohapatra S.K., An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear, 2019, Vol. 438-439. https://doi.org/10.1016/j.wear.2019.01.082
  • [4] Kaszuba M., Widomski P., Białucki P., Lange A., Boryczko B., Walczak M., Properties of new-generation hybrid layers combining hardfacing and nitriding dedicated to improvement in forging tools’ durability. Archives of Civil and Mechanical Engineering, 2020, Vol. 20(3), 78.
  • [5] Wierzchoń T., Burakowski T., Inżynieria powierzchni metali. WNT, 1995. 556 s.
  • [6] Budzyński P., Kamiński M., Turek M., Wiertel M., Impact of nitrogen and manganese ion implantation on the tribological properties of Stellite 6 alloy. Wear, 2020, Vol. 456-457, 203360.
  • [7] Żebrowski R., Walczak M., Effect of the Shot Peening on Surface Properties and Tribological Performance of Ti-6Al-4V Alloy Produced by Means of DMLS Technology. Arch. of Metallurgy and Materials, 2019, Vol. 64(1), 377-83.
  • [8] Macek W., Szala M., Kowalski M., Gargasas J., Rehmus-Forc A., Deptuła A., Shot peening intensity effect on bending fatigue strength of S235, S355 and P460 structural steels. IOP Conference Series: Materials Science and Engineering, 2019, Vol. 710, 012035.
  • [9] Łatka L., Biskup P., Development in PTA Surface Modifications – A Review. Advances in Materials Science, 2020, Vol. 20(2), 39-53.
  • [10] Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., i in., Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 2014, Vol. 16(1), 4-25.
  • [11] Czupryński A., Adamiak M., Bayraktar E., Wyględacz B., Comparison of tribological properties and structure of coatings produced in powder flame spraying process on grey cast iron. Weld. Tech. Rev., 2020, Vol. 92(3), 7-21.
  • [12] Klimpel A., Napawanie i natryskiwanie cieplne: technologie. WNT, 2009. 470 s.
  • [13] Bazychowska S., Smoleńska H., Kończewicz W., The Impact of Material Selection on Durability of Exhaust Valve Faces of a Ship Engine - A Case Study. Advances in Science and Technology Research Journal, 2020, Vol. 14(3), 165-74.
  • [14] Bartkowski D., Matysiak W., Wojtko K., Stellite-6 surface layers reinforced with hard and refractory WC particles produced on steel for metal forming. IOP Conference Series: Materials Science and Engineering, 2018, Vol. 393, 012093.
  • [15] Hattori S., Mikami N., Cavitation erosion resistance of stellite alloy weld overlays. Wear Internet, 2009, Vol. 267(11), 1954-60.
  • [16] Chmielewski T., Golański D., Napawanie brązu berylowego stellitem metodą MCAW. Welding Technology Review, 2011, Vol. 83(10). https://doi.org/10.26628/wtr.v83i10.464
  • [17] Falqueto L.E., Butkus D.J., De Mello J.D.B., Bozzi A.C., Scandian C., Sliding wear of cobalt-based alloys used in rolling seamless tubes. Wear, 2017, Vol. 376-377, 1739-46.
  • [18] Szala M., Hejwowski T., Improvement of cavitation erosion resistance of metal alloys by pad welding of coatings. Przegląd Spawalnictwa - Welding Technology Review, 2015, Vol. 87(9), 56-60.
  • [19] Foster J., Cullen C., Fitzpatrick S., Payne G., Hall L., Marashi J., Remanufacture of hot forging tools and dies using laser metal deposition with powder and a hard-facing alloy Stellite 21®. Journ. of Remanuf., 2019, Vol. 9(3), 189-203.
  • [20] G.p. R., M. K., Bakshi S.R., Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surface and Coatings Technology, 2017, Vol. 326, 63-71.
  • [21] Szala M., Walczak M., Cavitation erosion and sliding wear resistance of HVOF coatings. Welding Technology Review, 2018, Vol. 90(10). https://doi.org/10.26628/wtr.v90i10.964
  • [22] Materiały spawalnicze : MOST EL-Co 6 - drut spawalniczy.Materiały spawalnicze: www.rywal.com.pl.
  • [23] Materiały spawalnicze : MOST EL-Co 1 - drut spawalniczy.Materiały spawalnicze: www.rywal.com.pl.
  • [24] K. Ferenc, Spawalnictwo. Warszawa, WNT, 2009. 262 s.
  • [25] Brodziński A., Laboratorium ogólne - maszyny i urządzenia do obróbki plastycznej. Lublin, Poland, Wydaw. Uczelniane PL, 1993. 156 s.
  • [26] Kennametal Stellite.Kennametal Stellite https://www.stellite.com/us/en/home.html.
  • [27] OK Tigrod 308LSi - pręt spawalniczy.www.rywal.com.pl.
  • [28] Klimpel A., Podręcznik spawalnictwa: Technologie spawania i cięcia.Wydawnictwo Politechniki Śląskiej, 2013. 764 s.
  • [29] Pilarczyk J., Poradnik inżyniera: spawalnictwo (in Polish)/ Engineering handbook: welding. Poland, Wydawnictwa Naukowo-Techniczne, 2008. 1068 s.
  • [30] Zhu Z., Ouyang C., Qiao Y., Zhou X., Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes.T. 2017, Scanning. Hindawi, 2017. s. e6097486. https://doi.org/10.1155/2017/6097486
  • [31] Gomes R., Henke S., D´Oliveira A.S., Microstructural control of Co-based PTA coatings. Materials Research , 2012, Vol. 15(5), 796-800.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0812a4e9-4f15-440b-a4ba-f2cffd8ea47f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.