Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this paper is to describe spatial differences in the uncertainty of features of the runoff regimes of Polish rivers based on entropy in Shannon’s information theory. They included: the entropy of monthly river runoff and the entropy of river runoff distribution over time. An analysis of monthly flow series for the years 1951-2010 from 395 gauging stations located on 248 rivers in Poland was performed. This allowed a quantitative determination of the degree of uncertainty of two regime characteristics indirectly establishing the predictability, regularity, and stability of their appearance and their spatial variability. An analysis of relations between the calculated entropy, as well as between the entropy and the classical parameters commonly used was performed in describing the hydrological regime. The obtained grouping of rivers into four categories in terms of entropy of volume and distribution of runoff in the annual cycle clearly coincides with the types of river regime distinguished in Poland.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1825--1839
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Adam Mickiewicz University, Department of Hydrology and Water Management, Poznań, Poland
Bibliografia
- Amorocho, J., and B. Espildora (1973), Entropy in the assessment of uncertainty in hydrologic systems and models, Water Resour. Res. 9, 6, 1511-1522, DOI: 10.1029/WR009i006p01511.
- Barberis, C., P. Molnar, P. Claps, and P. Burlando (2003), Hydrologic similarity of river basins through regime stability, Dipartimento Di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico Di Torino.
- Chapman, T.G. (1986), Entropy as a measure of hydrologic data uncertainty and model performance, J. Hydrol. 85, 1-2, 111-126, DOI: 10.1016/0022- 1694(86)90079-X.
- Dalezios, N.R., and P.A. Tyraskis (1989), Maximum entropy spectra for regional precipitation analysis and forecasting, J. Hydrol. 109, 1-2, 25-42, DOI: 10.1016/0022-1694(89)90004-8.
- Dynowska, I., and J. Pociask-Karteczka (1999), Water circulation. In: L. Starkel (ed.), Geography of Poland. Natural Environment, Warszawa, 343-373 (in Polish).
- Hattermann, F.F., Z.W. Kundzewicz, S. Huang, T. Vetter, F.-W. Gerstengarbe, and P. Werner (2013), Climatological drivers of changes in flood hazard in Germany, Acta Geophys. 61, 2, 463-477, DOI: 10.2478/s11600-012-0070- 4.
- Kawachi, T., T. Maruyama, and V.P. Singh (2001), Rainfall entropy for delineation of water resources zones in Japan, J. Hydrol. 246, 1-4, 36-44, DOI: 10.1016/S0022-1694(01)00355-9.
- Koutsoyiannis, D. (2005), Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrol. Sci. J. 50, 3, 381-404, DOI: 10.1623/hysj.50.3.381. 65031.
- Krasovskaia, I. (1995), Quantification of the stability of river flow regimes, Hydrol. Sci. J. 40, 5, 587-598, DOI: 10.1080/02626669509491446.
- Krasovskaia, I. (1997), Entropy-based grouping of river flow regimes, J. Hydrol. 202, 1-4, 173-191, DOI: 10.1016/S0022-1694(97)00065-6.
- Krstanovic, P.F., and V.P. Singh (1992), Transfer of information in monthly rainfall series of San Jose, California. In: V.P. Singh and M. Fiorentino (eds.), Entropy and Energy Dissipation in Water Resources, Kluwer Academic Publishers, 155-173, DOI: 10.1007/978-94-011-2430-0_8.
- Kundzewicz, Z.W., and S. Huang (2010), Seasonal temperature extremes in Potsdam, Acta Geophys. 58, 6, 1115-1133, DOI: 10.2478/s11600-010-0026-5.
- Maruyama, T., and T. Kawachi (1998), Evaluation of rainfall characteristics using entropy, J. Rainwater Catchment Syst. 4, 1, 7-10.
- Maruyama, T., T. Kawachi, and V.P. Singh (2005), Entropy-based assessment and clustering of potential water resources availability, J. Hydrol. 309, 1-4, 104- 113, DOI: 10.1016/j.jhydrol.2004.11.020.
- Shannon, C.E. (1948), A mathematical theory of communication, Bell. Labs. Tech. J. 27, 3, 379-423, DOI: 10.1002/j.1538-7305.1948.tb01338.x.
- Singh, V.P. (1997), The use of entropy in hydrology and water resources, Hydrol. Process. 11, 6, 587-626, DOI: 10.1002/(SICI)1099-1085(199705)11:6< 587::AID-HYP479>3.0.CO;2-P.
- Sonuga, J.O. (1972), Principle of maximum entropy in hydrologic frequency analysis, J. Hydrol. 17, 3, 177-191, DOI: 10.1016/0022-1694(72)90003-0.
- Sonuga, J.O. (1976), Entropy principle applied to the rainfall-runoff process, J. Hydrol. 30, 1-2, 81-94, DOI: 10.1016/0022-1694(76)90090-1.
- Strupczewski, W.G., K. Kochanek, E. Bogdanowicz, I. Markiewicz, and W. Feluch (2016), Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers, Acta Geophys. 64, 1, 206-236, DOI: 10.1515/acgeo-2015-0070.
- Woś, A. (2010), Climate of Poland in the Second Half of the 20th Century, Wyd. Naukowe UAM, Poznań (in Polish).
- Wrzesiński, D. (2010), Spatial Differentiation of the Stability of the Flow Regime of European Rivers, Bogucki Wydawnictwo Naukowe, Poznań (in Polish).
- Wrzesiński, D. (2013a), Entropy of River Flows in Poland, Studia i Prace z Geografii i Geologii 33, Bogucki Wydawnictwo Naukowe, Poznań, 204 pp. (in Polish).
- Wrzesiński, D. (2013b), Uncertainty of flow regime characteristics of rivers in Europe, Quaest. Geograph. 32, 1, 49-59, DOI: 10.2478/quageo-2013-0006.
- Wrzesiński, D. (2014), Uncertainty of the flow regime of rivers in Poland, Monografie Komitetu Gospodarki Wodnej PAN 20, 2, 189-201 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08120b08-1387-489b-b311-be0412b09edd