PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of conceptual knowledge and mode of reasoning relating to the characteristics of covalent bonds in future algerian physics teachers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study we tried to analyse how future teachers of Ecole Normale Supérieure (ENS) school who are at the end of education have integrated the specifications of covalent bonds in the different bond orders in terms of symmetry, stability, length, localisation (in the case of structures of ethane, ethylene and acetylene) or delocalisation of electrons (case of benzene). The analysis of responses to a written questionnaire shows that the majority of students have only integrated some knowledge, which may be termed as procedural, on the structural elements of molecules such as stability and the length of bonds. Although possessing some conceptual knowledge, students tend to use an alternative way of reasoning arising from the mental representation that single and multiple bonds are independent entities: the single bond is a ”σ bond” while the double bond is considered only as a ”π bond”.
Rocznik
Strony
105--121
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Taber KS. Conceptual integration and science learners: do we expect too much? Invited seminar paper presented at the Centre for Studies in Science and Mathematics Education. University of Leeds, 2005;2. Available from: https://www.educ.cam.ac.uk/research/programmes/eclipse/CSSME2005.pdf.
  • [2] Hiberty PC, Volatron F. La théorie de la liaison de valence. Bulletin de l’Union des Physiciens. 2003;97:7-25. Available from: http://www.lcpq.ups-tlse.fr/spip.php?article1431&lang=en.
  • [3] Dumon A, Luft R. Naissance de la chimiestructurale. Paris: EDP Sciences; 2008. ISBN: 9782759800421. DOI: 10.1051/978-2-7598-0349-1.
  • [4] Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. New York: Cornell University Press; 1940. ISBN: 9780801403330. DOI: 10.1002/jps.3030300111.
  • [5] Champagne AB, Klopfer LE, Desena A, Squires DA. Structural representations of student’s knowledge before and after science instruction. J Res Sci Teach. 1981;18:97-111. DOI: 10.1002/tea.3660180202.
  • [6] Turner M. La perspicacité et la mémoire. Conférencelue au Collège de France, à Paris. Available from: https://markturner.org/cdf/cdf3.html.
  • [7] Winograd T. Frame Representations and the Procedural - Declarative Controversy. In: Bobrow D, Collins A, editors. Representation and Understanding: Studies in Cognitive Science. New York: Academic Press; 1975;185-210. ISBN: 0121085503. DOI: 10.1016/B978-0-12-108550-6.50012-4.
  • [8] Orange C. Problèmes et modélisation en biologie- quels apprentissages pour le lycée. Paris: PUF; 1997. ISBN: 2130484212. DOI: 10.7202/031977AR.
  • [9] Rushton GT, Hardy RC, Gwaltney KP, Lewis SE. Alternative conceptions of organic chemistry topics among fourth year chemistry students. Chem Educ Res Pract. 2008;9:122-30. DOI: 10.1039/B806228P.
  • [10] Cooper MM, Corley LM, Underwood SM. An investigation of college chemistry student’s understanding of structure-property relationships. J Res Sci Teach. 2013;50:699-721. DOI: 10.1002/tea.21093.
  • [11] Cooper MM, Grove N, Underwood SM, Klymkowsky MW. Lost in Lewis structure: an investigation of student difficulties in developing representational competence. J Chem Educ. 2010;87:869-74. DOI: 10.1021/ed900004y.
  • [12] Cooper MM, Underwood SM, Hilley CZ. Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Chem Educ Res Pract. 2012;(13):195-200. DOI: 10.1039/C2RP00010E.
  • [13] Cooper MM, Underwood SM, Hilley CZ, Klymkowsky MW. Development and assessment of a molecular structure and properties learning progression. J Chem Educ. 2012;(89):1351-7. DOI: 10.1021/ed300083a.
  • [14] Laszlo P. Describing reactivity with structural formulas, or when push comes to shove. Chem Educ Res Pract. 2002;3:113-8.DOI: 10.1039/B2RP90009B.
  • [15] Bhattacharyya G, Bodner GM. It gets me to the product: how students propose organic mechanisms. J Chem Educ. 2005;82:1402-7. DOI: 10.1021/ed082p1402.
  • [16] Ferguson R, Bodner GM. Making sense of the arrow-pushing formalism among chemistry majors enrolled in organic chemistry. Chem Educ Res Pract. 2008;9:102-13.DOI: 10.1039/b806225k.
  • [17] Kraft A, Strickland A, Bhattacharyya G. Reasonable reasoning: multivariate problem-solving in organic chemistry. Chem Educ Res Pract. 2010;11:281-92. DOI: 10.1039/C0RP90003F.
  • [18] Barlet R, Plouin D. La dualité microscopique-macroscopique un obstacle sous jacent aux difficultés en chimie dans l'enseignement universitaire. Aster. 1997;25:143-74. DOI: 10.4267/2042/8683.
  • [19] Agrebi S. De la représentation symbolique au langage lors de l’apprentissage des mécanismes en chimie organique dans l’enseignement supérieur. PhD Thesis. Université de Lyon. 2004;2. Available from: http://theses.univ-lyon2.fr/documents/lyon2/2004/agrebi_s#p=0&a=top.
  • [20] Hassan AK, Hill R, Reid N. Ideas underpinning success in an introductory course in organic chemistry. U Chem Educ. 2004;8:40-50. Available from: https://www.rsc.org/images/p2_reid_tcm18-31146.pdf.
  • [21] Treagust DF. Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Res Sci Educ. 2004;34:1-20. DOI: 10.1023/B:RISE.0000020885.41497.ed.
  • [22] Gold M. Chemical education: an obsession with content. J Chem Educ. 1988;65:780-1. DOI: 10.1021/ed065p780.
  • [23] Zoller U. Students’ misunderstandings and misconceptions in college freshman chemistry (general and organic). J Res Sci Teach. 1990;27:883-903. DOI: 10.1002/tea.3660271011.
  • [24] Dumon A, Sauvaitre H. Comment les étudiants approprient-ils le modèle quantique de la liaison chimique? L’Actualité Chimique. 1995;1:13-22. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj24qit46z1AhWD8eAKHXy_BTYQFnoECAIQAQ&url=https%3A%2F%2Fnew.societechimiquedefrance.fr%2Fwpcontent%2Fuploads%2F2019%2F12%2F1995-192-dec-p77-index.pdf&usg=AOvVaw3EsP6pn0dvVnn8iTSAVo22.
  • [25] Tsaparlis G. Atomic orbitals, molecular orbitals and related concepts: conceptual difficulties among chemistry students. Res Sci Educ. 1997;27:271-87. DOI: 10.1007/BF02461321.
  • [26] Taber KS. Building the structural concepts of chemistry: some consideration from educational research. Chem Educ Res Pract. 2001;2:123-58. DOI: 10.1039/B1RP90014E.
  • [27] Taber KS. Conceptualising quanta: illuminating the ground state of student understanding of atomic orbitals. Chem Educ Res Pract. 2002;3:145-58. DOI: 10.1039/B2RP90012B.
  • [28] Taber KS. Compounding quanta: probing the frontiers of student understanding of molecular orbitals. Chem Educ Res Pract. 2002;3:159-73. DOI: 10.1039/B2RP90013K.
  • [29] Tsaparlis G, Papaphotis G. Quantum-chemical concepts: are they suitable for secondary students? Chem Educ Res Pract. 2002;3:129-44. DOI: 10.1039/B2RP90011D.
  • [30] Nakiboglu C. Using word associations for assessing non major science students’ knowledge structure before and after general chemistry instruction: the case of atomic structure. Chem Educ Res Pract. 2008;9:309-22. DOI: 10.1039/B818466F.
  • [31] Papaphotis G, Tsaparlis G. Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts. Part 1: Statistical analysis of a quantitative study. Chem Educ Res Pract. 2008;9:323-31. DOI: 10.1039/B818468M.
  • [32] Hazzi S, Dumon A. Conceptual integration of hybridisation by Algerian students intending to teach physical sciences. Chem Educ Res Pract. 2011;12:443-53. DOI: 10.1039/C1RP90049H.
  • [33] Hazzi S, Dumon A. Conceptual integration of covalent bonds models by Algerian students. Chem Educ Res Pract. 2014;15:675-88. DOI: 10.1039/C4RP00041B.
  • [34] Coll RK, Treagust DF. Exploring tertiary students’ understanding of covalent bonding. Res Sci Tech Educ. 2002;20:241-67. DOI: 10.1080/0263514022000030480.
  • [35] Bucat RB, Mocerino M. Learning at the sub-micro level: structural representations. In: Gilbert JK, Treagust D, editors. Multiple Representations in Chemical Education, Models and Modeling in Science Education. New York: Springer Verlag; 2009:11-30. DOI: 10.1007/978-1-4020-8872-8.
  • [36] Nordholm S, Bacskay GB. The basics of covalent bonding in terms of energy and dynamics. Molecules. 2020;25(11):2667. DOI: 10.3390/molecules25112667.
  • [37] Valence Bond Theory. 2020. Available from: https://chem.libretexts.org/@go/page/2002.
  • [38] Tsaparlis G, Pantazi G, Pappa ET, Byers B. Using electrostatic potential maps as visual representations to promote better understanding of chemical bonding. Chem Teach Inter. 2021;3(4):391-411. DOI: 10.1515/cti-2021-0012.
  • [39] Ilmah M, Yahmin Y, Muntholib M. Analysis of chemistry teachers’ covalent bond conceptual understanding through diagnostic interview technique. J-PEK. 2020;5(2):108-15. DOI: 10.17977/um026v5i22020p108.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08114adc-4e5e-4a62-80aa-5a46e5290960
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.