Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Controlling the unstable processes is challenging since one or more poles are located on the right side of the s-plane. The existence of dead time in these systems makes control much more difficult. In this paper, internal model control based sliding mode control has been proposed for the control of unstable processes with dead time. Two sliding surfaces based on PID and PIDPI are used to design of the proposed controller. The parameters of continuous and discontinuous control law are obtained using differential evolution optimization technique. An objective function is constituted in terms of performance measure (integral absolute error) and control effort measure (total variation of controller output). Illustrative examples demonstrate the superiority of the proposed controller over earlier reported work in this realm, especially in terms of load disturbance rejection. A case study on temperature management of a continuous stirred tank reactor during an irreversible exothermic process also serves to highlight the applicability of the proposed system. Furthermore, robustness of the proposed controller is also investigated by inclusion of perturbations in the parameters. The obtained results clearly show how well the suggested controller works.
Czasopismo
Rocznik
Tom
Strony
805--831
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wzory
Twórcy
autor
- Department of Electrical Engineering, National Institute of Technology Patna, India
autor
- Department of Electrical Engineering, National Institute of Technology Patna, India
Bibliografia
- [1] M. Morari and E. Zafiriou: Robust Process Control. Prentice Hall, 1989.
- [2] B. Cajamarca, K. Patino, O. Camacho, D. Chavez, P. Leica and M. Pozo: A comparative analysis of sliding mode controllers based on internal model for a nonminimum phase buck and boost converter. Proceedings of the 2019 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, (2019), 189-195, DOI: 10.1109/INCISCOS49368.2019.00038
- [3] M. Herrera, O. Camacho, H. Leiva and C. Smith: An approach of dynamic sliding mode control for chemical processes. Journal of Process Control, 85 (2020), 112-120, DOI: 10.1016/j.jprocont.2019.11.008
- [4] M.A. Siddiqui, M.N. Anwar and S.H. Laskar: Control of nonlinear jacketed continuous stirred tank reactor using different control structures. Journal of Process Control, 108 (2021), 112-124. DOI: 10.1016/j.jprocont.2021.11.005
- [5] J. Espin, F. Castrillon, H. Leiva and O. Camacho: A modified Smith predictor based - Sliding mode control approach for integrating processes with dead time. Alexandria Engineering Journal, 61 (2022), 10119-10137. DOI: 10.1016/j.aej.2022.03.045
- [6] L. Morales, J.S. Estrada, M. Herrera, A. Rosales, P. Leica and S. Gamboa: Hybrid approaches-based sliding-mode control for pH process control. ACS Omega, 7 (2022), 45301-45313. DOI: 10.1021/acsomega.2c05756
- [7] Z. Sun, H. Xie, J. Zheng, Z. Man and D. He: Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode. Mechanical Systems and Signal Processing, 147 (2021), DOI: 10.1016/j.ymssp.2020.107128
- [8] I. Kaya: Sliding-mode control of stable processes. Industrial and Engineering Chemistry Research, 46(2), (2007), 571-578. DOI: 10.1021/ie0607806
- [9] M.A. Siddiqui, M.N. Anwar and S.H. Laskar: Sliding mode controller design for second-order unstable processes with dead-time. Journal of Electrical Engineering, 71(4), (2020), 237-245. DOI: 10.2478/jee-2020-0032
- [10] A. Li, M. Liu and Y. Shi: Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method. Acta Astronautica, 175 (2020), 570-581. DOI: 10.1016/j.actaastro.2020.05.041
- [11] J. Long, S. Zhu, P. Cui and Z. Liang: Barrier Lyapunov function based sliding mode control for Mars atmospheric entry trajectory tracking with input saturation constraint. Aerospace Science and Technology, 106 (2020), DOI: 10.1016/j.ast.2020.106213
- [12] P. Mani and Y.H. Joo: Fuzzy logic-based integral sliding mode control of multi-area power systems integrated with wind farms. Information Sciences, 545 (2021), 153-169, DOI: 10.1016/j.ins.2020.07.076
- [13] M.A. Ebrahim, M.N. Ahmed, H.S. Ramadan, M. Becherif and J. Zhao: Optimal metaheuristic-based sliding mode control of VSC-HVDC transmission systems. Mathematics and Computers in Simulation, 179 (2021), 178-193, DOI: 10.1016/j.matcom.2020.08.009
- [14] L.Y. Hao, H. Zhang, H. Li and T.S. Li: Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Engineering, 215 (2020), DOI: 10.1016/j.oceaneng.2020.107882
- [15] X. Liu, M. Zhang, J. Chen and B. Yin: Trajectory tracking with quaternion-based attitude representation for autonomous underwater vehicle based on terminal sliding mode control. Applied Ocean Research, 104 (2020), DOI: 10.1016/j.apor.2020.102342
- [16] Y. Islam, I. Ahmad, M. Zubair and K. Shahzad: Double integral sliding mode control of leukemia therapy. Biomedical Signal Processing and Control, 61 (2020), DOI: 10.1016/j.bspc.2020.102046
- [17] S. Rezvani-Ardakani, S. Mohammad-Ali-Nezhad and R. Ghasemi: Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky-Rinzel pyramidal model through ion channels with optogenetic method. Computer Methods and Programs in Biomedicine, 195 (2020), DOI: 10.1016/j.cmpb.2020.105665
- [18] U. Mehta and I. Kaya: Smith predictor with sliding mode control for processes with large dead times. Journal of Electrical Engineering, 68(6), (2017), 463-469, DOI: 10.1515/jee-2017-0081
- [19] O. Camacho and C. A. Smith: Sliding mode control: An approach to regulate nonlinear chemical processes. ISA Transactions, 39(2), (2000), 205-218, DOI: 10.1016/s0019-0578(99)00043-9
- [20] R. Rojas, O. Camacho and L. González: A sliding mode control proposal for open-loop unstable processes. ISA Transactions, 43(2), (2004), 243-255, DOI: 10.1016/s0019-0578(07)60034-2
- [21] O. Camacho and F. De la Cruz: Smith predictor based-sliding mode controller for integrating processes with elevated deadtime. ISA Transactions, 43(2), (2004), 257-270, DOI: 10.1016/s0019-0578(07)60035-4
- [22] D.B. Talange, A.R. Laware and V.S. Bandal: Development of an internal model sliding mode controller for cascade control system. Proceedings of 2015 International Conference on Energy Systems and Applications, Pune, India, (2016), 51-56, DOI: 10.1109/ICESA.2015.7503312
- [23] M.M.P. De La Parte, O. Camacho and E.F. Camacho: A GPC-based sliding mode controller for nonlinear chemical processes. Proceedings of the European Control Conference (ECC 2001), Porto, Portugal, (2001), 3777-3782, DOI: 10.23919/ecc.2001.7076522
- [24] O. Camacho, C. Smith and W. Moreno: Development of an internal model sliding mode controller. Industrial and Engineering Chemistry Research, 42(3), (2003), 568-573, DOI: 10.1021/ie010481a
- [25] U. Mehta and R. Rojas: Smith predictor based sliding mode control for a class of unstable processes. Transactions of the Institute of Measurement and Control, 39(5), (2017), 1-9, DOI: 10.1177/0142331215619973
- [26] D.B. Talange, A.R. Laware and V.S. Bandal: Development of an internal model sliding mode controller for cascade control system. Proceedings of the International Conference on Energy Systems and Applications (ICESA 2015), Pune, India, (2015), 51-56, DOI: 10.1109/ICESA.2015.7503312
- [27] O. Camacho: A predictive approach based-sliding mode control. IFAC Proceedings Volumes, 15(1), (2002), 381-385, DOI: 10.3182/20020721-6-es-1901.00632
- [28] O. Camacho and R. Rojas: A general sliding mode controller for nonlinear chemical processes. Journal of Dynamic Systems, Measurement, and Control, 122 (2000), 650-655, DOI: 10.1115/1.1318351
- [29] R. Storn and K. Price: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(3), (1997), 341-359, DOI: 10.1023/A:1008202821328
- [30] S. Saremi, S. Mirjalili and A. Lewis: Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105 (2017), 30-47, DOI: 10.1016/j.advengsoft.2017.01.004
- [31] A.K. Barik and D.C. Das: Expeditious frequency control of solar photovoltaic/biogas/biodiesel generator based isolated renewable microgrid using grasshopper optimisation algorithm. IET Renewable Power Generation, 12(14), (2018), 1659-1667, DOI: 10.1049/iet-rpg.2018.5196
- [32] T. Eltaeib and A. Mahmood: Differential evolution: A survey and analysis. Applied Science, 8(10), (2018), DOI: 10.3390/app8101945
- [33] S. Skogasted: Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), (2003), 291-309, DOI: 10.1016/S0959-1524(02)00062-8
- [34] S. Atic and I. Kaya: PID controller design based on generalized stability boundary locus to control unstable processes with dead time. Proceedings of the 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, (2018) 1-6, DOI: 10.1109/MED.2018.8442568
- [35] N. Anwar and S. Pan: A frequency response model matching method for PID controller design for processes with dead-time. ISA Transactions, 55(3), (2014), 175-187, DOI: 10.1016/j.isatra.2014.08.020
- [36] A. Raza and M.N. Anwar: A unified approach of PID controller design for unstable processes with time delay. Journal of Central South University, 27(9), (2020), 2643-2661, DOI: 10.1007/s11771-020-4488-6
- [37] W. Cho, J. Lee and T.F. Edgar: Simple analytic proportional-integral-derivative (PID) controller tuning rules for unstable processes. Industrial and Engineering Chemistry Research, 53(13), (2014), 5048-5054, DOI: 10.1021/ie401018g
- [38] M. Shamsuzzoha and M. Lee: Enhanced disturbance rejection for open-loop unstable process with time delay. ISA Transactions, 48(2), (2009), 237-244, DOI: 10.1016/j.isatra.2008.10.010
- [39] Q.H. Seer and J. Nandong: Stabilization and PID tuning algorithms for second-order unstable processes with time-delays. ISA Transations, 67 (2017), 233-245, DOI: 10.1016/j.isatra.2017.01.017
- [40] M. Shamsuzzoha: Closed-loop PI/PID controller tuning for stable and integrating proces with time delay. Industrial and Engineering Chemistry Research, 52(36), (2013), 12973-12992, DOI: 10.1021/ie401808m
- [41] J.C. Jeng: Simultaneous closed-loop tuning of cascade controllers based directly on set-point step-response data. Journal of Process Control, 24(5), (2014), 652-662, DOI: 10.1016/j.jprocont.2014.03.007
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0808294b-0b26-4f9c-8d40-d8d8fdb83278
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.