PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of air-entraining agent on the properties of mortars

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ domieszki napowietrzającej na właściwości zapraw
Języki publikacji
EN
Abstrakty
EN
The effect of the air-entraining agent on properties of mortar mixtures as well as on the compressive strength of hardened mortars was the objective of this study. Such mortars contain a certain amount of evenly spread closed air-voids pores with dimensions of 0.02-0.05 mm. On the one hand, the presence of a large volume of such air bubbles results in the reduction of mechanical properties of mortar. On the other hand, the use of this technological approach improves rheological properties of mortar mixture. The effect of the air entrainment on the flow, density, volume of entrained air of mortar mixture and compressive strength of hardened mortar was established. Obtained results show substantial increasing in the mortar flow at cement to sand ratio 1:2 by 1.8 times. The further decrease of C:S ratio results in a slight increase of the flow and even negligible its decrease at C:S = 1:4 compared to the reference mortar. The increase of the volume of entrained air results in the decrease of the density and compressive strength of mortar, but improve the resistance to freezing/thawing cycles. The results of this study can be a guide for mortar mix design to choose the most appropriate mix proportion to produce economically efficient mortars.
PL
Celem badań był wpływ domieszki napowietrzającej na właściwości mieszanek zaprawowych oraz wytrzymałość na ściskanie zapraw. Zaprawy takie zawierają pewną ilość równomierne rozprowadzonych, zamkniętych porów powietrznych o wymiarach 0,02-0,05 mm. Z jednej strony, obecność dużej ilości takich pęcherzyków powietrza powoduje obniżenie właściwości mechanicznych zaprawy. Z drugiej strony, zastosowanie tego podejścia technologicznego poprawia właściwości reologiczne mieszanki zaprawy. Określono wpływ domieszki napowietrzającej na urabialność, gęstość, objętość wprowadzonego powietrza oraz wytrzymałość na ściskanie zaprawy. Uzyskane wyniki wskazują na znaczny, 1,8-krotny wzrost rozpływu zaprawy przy stosunku cementu do piasku 1:2. Dalsze zmniejszanie stosunku C:S powoduje niewielki wzrost urabialności, a nawet znikomy jego spadek przy C:S = 1:4 w porównaniu do zaprawy wzorcowej. Wzrost objętości wprowadzonego powietrza powoduje zmniejszenie gęstości i wytrzymałości na ściskanie zaprawy, ale poprawia mrozoodporność. Wyniki badań mogą być wskazówką przy projektowaniu zapraw, aby wybrać najbardziej odpowiednie proporcje mieszanki w celu wytworzenia ekonomicznie efektywnych zapraw.
Rocznik
Strony
147--156
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • Faculty of Civil Engineering, Czestochowa University of Technology, Czestochowa, Poland
autor
  • Department of Building Production, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine
  • Department of Highways and Bridges, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine
autor
  • Department of Highways and Bridges, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine
  • Faculty of Civil Engineering, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] E. Mehmetoğulları, H. Güneyli, and S. Karahan, “The effect of gradation and grain-size properties of fine aggregate on the building mortars”, Production Engineering Archives, vol. 26, no. 3, pp. 121-126, 2020, doi: 10.30657/pea.2020.26.23.
  • [2] B. Dębska, J. Krasoń, and L. Lichołai, “The evaluation of the possible utilization of waste glass in sustainable mortars”, Construction of Optimized Energy Potential (CoOEP), vol. 9, no. 2, pp. 7-15, 2020, doi: 10.17512/bozpe.2020.2.01.
  • [3] J. Jura, “Influence of type of biomass burned on the properties of cement mortar containing fly ash”, Construction of Optimized Energy Potential (CoOEP), vol. 9, no. 1, pp. 77-82, 2020, doi: 10.17512/bozpe.2020.1.09.
  • [4] E.A. Ohemeng, S.O. Ekolu, H. Quainoo, and A. Naghizadeh, “Economical and eco-friendly masonry mortar containing waste concrete powder as a supplementary cementitious material”, Case Studies in Construction Materials, vol. 17, art. no. e01527, 2022, doi: 10.1016/j.cscm.2022.e01527.
  • [5] A.A. Azmi, et al., “Crumb rubber geopolymer mortar at elevated temperature exposure”, Archives of Civil Engineering, vol. 68, no. 3, pp. 87-105, 2022, doi: 10.24425/ace.2022.141875.
  • [6] J. Gołaszewski and M. Gołaszewska, “The effect of shrinkage reducing admixture and expansive admixture on properties of mortars with Portland and slag cement”, Archives of Civil Engineering, vol. 68, no. 2, pp. 337-353, 2022, doi: 10.24425/ace.2022.140646.
  • [7] J. Gołaszewski and M. Gołaszewska, “Properties of mortars with calcium sulfoaluminate cements with the addition of Portland cement and limestone”, Archives of Civil Engineering, vol. 67, no. 2, pp. 425-435, 2021, doi: 10.24425/ace.2021.137177.
  • [8] M. Babiak, M. Ratajczak, P. Kulczewski, and J. Kosno, “Effect of modern air entraining admixtures on physical properties of construction mortars”, Materials Science Forum, vol. 923, pp. 115-119, 2018, doi: 10.4028/www.scientific.net/MSF.923.115.
  • [9] M. Koniorczyk, D. Bednarska, A. Wieczorek, and P. Konca, “Freezing of fully and partly saturated cement paste”, Archives of Civil Engineering, vol. 67, no. 2, pp. 383-396, 2021, doi: 10.24425/ace.2021.137174.
  • [10] L.E. Tunstall, M.T. Ley, and G.W. Scherer, “Air entraining admixtures: Mechanisms, evaluations, and interactions”, Cement and Concrete Research, vol. 150, art. no. 106557, 2021, doi: 10.1016/j.cemconres.2021.106557.
  • [11] Z. Blikharskyy, K. Sobol, T. Markiv, and J. Selejdak, “Properties of concretes incorporating recycling waste and corrosion susceptibility of reinforcing steel bars”, Materials, vol. 14, no. 10, pp. 1-15, 2021, doi: 10.3390/ma14102638.
  • [12] Z. Sun and G.W. Scherer, “Effect of air voids on salt scaling and internal freezing”, Cement and Concrete Research, vol. 40, no. 2, pp. 260-270, 2010, doi: 10.1016/j.cemconres.2009.09.027.
  • [13] O. Coussy and P.J.M. Monteiro, “Poroelastic model for concrete exposed to freezing temperatures”, Cement and Concrete Research, vol. 38, no. 1, pp. 40-48, 2008, doi: 10.1016/j.cemconres.2007.06.006.
  • [14] L. Du and K.J. Folliard, “Mechanisms of air entrainment in concrete”, Cement and Concrete Research, vol. 35, no. 8, pp. 1463-1471, 2005, doi: 10.1016/j.cemconres.2004.07.026.
  • [15] M.T. Ley, R. Chancey, M.C.G. Juenger, and K.J. Folliard, “The physical and chemical characteristics of the shell of air-entrained bubbles in cement paste”, Cement and Concrete Research, vol. 39, no. 5, pp. 417-425, 2009, doi: 10.1016/J.CEMCONRES.2009.01.018.
  • [16] X. Deng, Y. Liu, and R. Wang, “Investigating freeze-proof durability of air-entrained C30 recycled coarse aggregate concrete”, Archives of Civil Engineering, vol. 67, no. 2, pp. 507-524, 2021, doi: 10.24425/ace.2021.137182.
  • [17] L.J. Struble and Q. Jiang, “Effects of air entrainment on rheology”, ACI Materials Journal, vol. 101, no. 6, pp. 448-456, 2004, doi: 10.14359/13483.
  • [18] T. Markiv, K. Sobol, M. Franus, and W. Franus, “Mechanical and durability properties of concretes incorporating natural zeolite”, Archives of Civil and Mechanical Engineering, vol. 16, no. 4, pp. 554-562, 2016, doi: 10.1016/j.acme.2016.03.013.
  • [19] N. Tebbal, Z. El Abidine Rahmouni, and L.R. Chadi, “Study of the influence of an air-entraining agent on the rheology of motars”, MATEC Web of Conferences, vol. 149, 2018, doi: 10.1051/matecconf/201714901054.
  • [20] Q. Gu, A. Kang, B. Li, P. Xiao, and H. Ding, “Effect of fiber characteristic parameters on the high and low temperature rheological properties of basalt fiber modified asphalt mortar”, Case Studies in Construction Materials, vol. 17, 2022, doi: 10.1016/j.cscm.2022.e01247.
  • [21] DSTU B V 2.7-185:2009 Building materials. Cements. Methods of determination of normal thickness, setting time and soundness. Kyiv, Ukraine: Ukrarkhbudinform, 2009.
  • [22] DSTU B V 2.7-187:2009 Building materials. Cements. Methods of determination of bending and compression strength. Kyiv, Ukraine: Ukrarkhbudinform, 2009.
  • [23] DSTU B V 2.7-188:2009 Building materials. Cements. Methods of determination of fineness. Kyiv, Ukraine: Ukrarkhbudinform, 2009.
  • [24] DSTU B V 2.7-232:2010 Building materials. Sand for construction work testing methods. Kyiv, Ukraine: Ukrarkhbudinform, 2010.
  • [25] DSTU B V 2.7-239:2010 Building materials. Building mortars. Methods of test. Kyiv, Ukraine: Ukrarkhbudinform, 2010.
  • [26] T. Markiv, “Properties of fresh and hardened mortars with air-entraining agent”, Theory and Building Practice, vol. 2022, no. 2, pp. 105-110, 2022, doi: 10.23939/JTBP2022.02.105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08016dcb-0f28-49d0-a337-7b88eca1adbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.