PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Processing Techniques on Mechanical Properties and Impact Initiation of an Al-PTFE Reactive Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reactive materials (RMs) or impact-initiated materials have received much attention as a class of energetic materials in recent years. To assess the influence of processing techniques on mechanical properties and impact initiation behaviors of an Al-PTFE reactive material, quasi -static compression tests and drop-weight tests were performed. Scanning electron microscopy (SEM) was used to identify the characteristics of the interior microstructures of the Al-PTFE samples. A sintering process was found to transform Al-PTFE from a brittle to a ductile material with an increased elasticity modulus (from 108-160 MPa to 256-336 MPa) and yield stress (from 12-16 MPa to 19-20 MPa). Increasing the molding pressure from 36 MPa to 182 MPa increased the elastic modulus of all Al-PTFE samples and also the yield stress of unsintered ones. Unsintered samples in general required less energy to initiate than sintered ones. As the molding pressure increased, the impact initiation energy for sintered Al-PTFE fell from 96 J to 68 J, whereas the initiation energy for unsintered Al-PTFE rose from 68 J to 85 J. PTFE nanofiber networks observed in sintered samples formed under the higher molding pressures could contribute to the opposite trends observed in the impact initiation energy of unsintered and sintered Al-PTFE samples.
Rocznik
Strony
989--1004
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
autor
  • PLA University of Science and Technology 88 Hou Biao Yiing Road, Qin Huai District, 210007 Nanjing, China
Bibliografia
  • [1] Martirosyan K.S., Hobosyan M., Lyshevski S.E., Enabling Nanoenergetic Materials with Integrated Microelectronics and MEMS Platforms, 12th IEEE Int. Conf. Nanotechnology, Birmingham, United Kingdom, 2012, 1-5.
  • [2] Zhang X., Shi A., Qiao L., Zhang J., Zhang Y.G., Guan Z.W., Experimental Study on Impact-initiated Characters of Multifunctional Energetic Structural Materials, J. Appl. Phys., 2013, 113(8), 083508.
  • [3] Cai J., Walley S., Hunt R., Proud W.G., Nesterenko V.F., Meyers M.A., High-strain, High-strain-rate Flow and Failure in PTFE/Al/W Granular Composites, Mat. Sci. Eng. A, 2008, 472(1), 308-315.
  • [4] Nielson D.B., Tanner R.L., Lund G.K., High Strength Reactive Materials, Patent US 6 593 410, 2003.
  • [5] Lund G., Nielson D., Tanner R., High Strength Reactive Materials and Methods of Making, Patent US 7 307 117, 2003.
  • [6] Joshi V.S., Process for Making Polytetrafluoroethylene-aluminum Composite and Product Made, Patent US 6 547 993, 2003.
  • [7] Thadhani N., Shockinduced and Shock-assisted Solid-state Chemical Reactions in Powder Mixtures, J. Appl. Phys., 1994, 76(4), 2129-2138.
  • [8] Eakins D., Thadhani N.N., Shock-induced Reaction in a Flake Nickel + Spherical Aluminum Powder Mixture, J. Appl. Phys., 2006, 104(11), 113521-113521-5.
  • [9] Xiong W., Zhang X.F., Wu Y., He Y., Wang C.T., Guo L., Influence of Additives on Microstructures, Mechanical Properties and Shock-induced Reaction Characteristics of Al/Ni Composites, J. Alloys Compd., 2015, 648, 540-549.
  • [10] Zheng X., Curtis A.D., Shaw W.L., Dlott D.D., Shock Initiation of Nano-Al plus Teflon: Time-Resolved Emission Studies, J. Phys. Chem. C, 2013, 117(9), 4866-4875.
  • [11] Ames R.G., Energy Release Characteristics of Impact-initiated Energetic Materials, Mater. Res. Soc. Symp. Proc., 2006, 896, 123-132.
  • [12] Eakins D., Thadhani N., Shock Compression of Reactive Powder Mixtures, Int. Mater. Rev., 2009, 54(4), 181-213.
  • [13] Hunt E.M., Malcolm S., Pantoya M.L., Davis F., Impact Ignition of Nano and Micron Composite Energetic Materials, Int. J. Impact Eng., 2009, 36(6), 842-846.
  • [14] Ames R., Vented Chamber Calorimetry for Impact-Initiated Energetic Materials, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2005.
  • [15] Lee R.J., Mock W. Jr., Carney J.R., Holt W.H., Pangilinan G.I., Gamache R.M., Boteler J.M., Bohl D.G., Drotar J., Lawrence G.W., Reactive Materials Studies, AIP Conf. Proc., 2006, 845, 169-174.
  • [16] Casem D.T., Mechanical Response of an Al-PTFE Composite to Uniaxial Compression Over a Range of Strain Rates and Temperatures, DTIC Document, 2008.
  • [17] Raftenberg M., Mock W. Jr., Kirby G., Modeling the Impact Deformation of Rods of a Pressed PTFE/Al Composite Mixture, Int. J. Impact Eng., 2008, 35(12), 1735-1744.
  • [18] Cai J., Properties of Heterogeneous Energetic Materials Under High Strain, High Strain Rate Deformation, Dissertation Abstracts International, 2007, 68(07), 4758.
  • [19] Xu S., Yang S., Zhang W., The Mechanical Behaviors of Polytetrafluorethylene/Al/W Energetic Composites, J. Phys. Condens. Matter., 2009, 21(28), 285401.
  • [20] Wei D., Dave R., Pfeffer R., Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques, J. Nanopart. Res., 2002, 4(1-2), 21-41.
  • [21] Cheng J.L., Hng H.H., Lee Y.W., Du S.W., Thadhani N.N., Kinetic Study of Thermal- and Impact-initiated Reactions in Al–Fe2O3 Nanothermite, Combust. Flame, 2010, 157(12), 2241-2249.
  • [22] Lomov I., Herbold E., Mesoscale Studies of Mixing in Reactive Materials During Shock Loading, AIP Conf. Proc. 2012, 1426, 733-736.
  • [23] Mason B.A., Groven L.J., Son S.F., The Role of Microstructure Refinement on the Impact Ignition and Combustion Behavior of Mechanically Activated Ni/Al Reactive Composites, J. Appl. Phys., 2013, 114(11), 113501.
  • [24] Yarrington C.D., Combustion Characterization and Modeling of Novel Energetic Materials: Si/PTFE/Viton and Al/PTFE/Viton, ProQuest, UMI Dissertations Publishing, 2011.
  • [25] Callister W.D.J., Fundamentals of Materials Science and Engineering, John Wiley & Sons, 2008; ISBN 978-0-521-86675-0.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07fddb48-d231-44b9-979c-4441083c3a4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.