PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle concentrations in a church during different weather conditions – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to report particle number (PN) and particle mass (PM) concentration changes in the church during three 60-minute Masses held on a cloudy, sunny and rainy day. At each Mass with a similar number of participants the same number of candles was lit and incense was burned. The highest average PN1 and PM1 concentrations of submicrometer particles which respectively amounted to 23.9 pt/cm3 and 241.1 µg/m3 were obtained for the Mass held on a rainy day. During that Mass the maximum PN1 and PM1 concentrations (amounting to 59.4×103pt/cm3 and 632 µg/m3) were respectively about 15 and 39 times higher than the church background levels. The greatest number of submicrometer particles (about 18.5×109) was inhaled by an average participant of the Mass held on a sunny day and it was approximately 7 times higher than the number that would have been inhaled at the same time outdoors. The greatest mass of such particles (about 195.4 µg) was inhaled by an average participant of the Mass held on a rainy day and it was approximately 8 times higher than the mass of particles that would have been inhaled outdoors during the same time.
Rocznik
Strony
173--185
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • CMS Cameron McKenna, Warsaw, Poland
Bibliografia
  • 1. Suchorab Z, Barnat-Hunek D, Smarzewski P, Pavlík Z and Černý R. Free of Volatile Organic Compounds Protection against Moisture in Building Materials. Ecol Chem Eng S 2014; 21(3), 401–411.
  • 2. Buonanno G, Giovinco G, Morawska L and Stabile L. Lung cancer risk of airborne particles for Italian population. Environ Res 2015; 142, 443–451.
  • 3. Polednik B. Particulate matter and student exposure in school classrooms in Lublin, Poland. Environ Res 2013; 120, 134–139.
  • 4. Leung DYC. Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front Environ Sci 2015; 2, 69, pp 7.
  • 5. Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M and Wierzbicka A. Indoor aerosols: from personal exposure to risk assessment. Indoor Air 2013; 23(6), 462–487.
  • 6. Cantone L, Angelici L, Bollati V, Bonzini M, Apostoli P, Tripodi A, Bertazzi PA and Baccarelli AA. Extracellular histones mediate the effects of metal-rich air particles on blood coagulation. Environ Res 2014; 132: 76–82.
  • 7. Hagerman I, Isaxon C, Gudmundsson A, Wierzbicka A, Dierschke K, Berglund M, Pagels JH, Nielsen J, Assarsson E, Andersson UB, Xu Y, Jönsson BAG and Bohgard M. Effects on heart rate variability by artificially generated indoor nano-sized particles in a chamber study. Atmos Environ 2014; 88: 165–171.
  • 8. Polednik B. Particle exposure in a Baroque church during Sunday Masses. Environ Res 2013; 126: 215–220.
  • 9. Zanoni S, Stefani P, Ionescu G and Zambelli P. Assessing Some Criticalities Of Particulate Matter Exposure In An Urban Context. Wit Trans Ecol Environ 2014; 191: 12.
  • 10. Ho CK, Tseng WR and Yang CY. Adverse Respiratory and Irritant Health Effects in Temple Workers in Taiwan. J Toxic Environ Health A 2005; 68(17–18): 1465–1470.
  • 11. Pervez S, Chakrabarty R, Dewangan S, Watson JG, Chow JC, Matawle JL and Pervez Y. Cultural and Ritual Burning Emission Factors and Activity Levels in India. Aerosol Air Qual Res 2015; 15: 72–80.
  • 12. Loupa G, Karageorgos E and Rapsomaniki S. Potential effects of particulate matter from combustion during services on human health and on works of art in medieval churches in Cyprus. Environ Pollut 2010; 158: 2946–2953.
  • 13. Kontozova-Deutsch V, Cardell C, Urosevic M, Ruiz-Agudo E, Deutsch F and Van Grieken R. Characterization of indoor and outdoor atmospheric pollutants impacting architectural monuments: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci 2011; 63: 1433–1445.
  • 14. Morabito E, Zendri E, Piazza R, Ganzerla R, Montalbani S, Marcoleoni E, Bonetto F, Scandella A, Barbante C, Gambaro A. Deposition in St. Mark’s Basilica of Venice. Environ Sci Pollut R 2013; 20: 2579–2592.
  • 15. Weber S. Exposure of churchgoers to airborne particles. Environ Sci Technol 2006; 40: 5251–5156.
  • 16. Samek L, de Maeyer-Worobiec A, Spolnik Z, Bencs L, Kontozova V, Bratasz L, Kozlowski R and Van Grieken R. The impact of electric overhead radiant heating on the indoor environment of historic churches. J Cult Heritage 2007; 8(4): 361–369.
  • 17. Mleczkowska A, Strojecki M, Bratasz Ł and Kozłowski R. Particle penetration and deposition inside historical churches. Build Environ 2016; 95: 291–298.
  • 18. de Kok TMCM, Hogervorst JGF, Kleinjans JCS and Briede JJ. Radicals in the church. Eur Respir J 2004; 24, 1069–1070.
  • 19. Chuang HC, Jones T and BéruBé K. Combustion particles emitted during church services: Implications for human respiratory health. Environ Int 2012; 40: 137–142.
  • 20. Evans GJ, Peers A and Sabaliauskas K. Particle dose estimation from frying in residential settings. Indoor Air 2008; 18: 499–510.
  • 21. Cyrys J, Pitz M, Bischof W, Wichmann HE and Heinrich J. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J Expo Sci Environ Epidemiol 2004; 14: 275–283.
  • 22. Zhao B and Wu J. Particle deposition in indoor environments: analysis of influencing factors. J Hazard Mater 2007; 147: 439–448.
  • 23. Mostafa AMA, Tamaki K, Moriizumi J, Yamazawa H and Iida T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat Prot Dosimetry 2011; 146(1–3): 19–22.
  • 24. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M and Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 2015; 15: 8217–8299.
  • 25. Davis RE, McGregor GR and Enfield KB. Humidity: A review and primer on atmospheric moisture and human health. Environ Res 2016; 144: 106–116.
  • 26. Jia L and Xu YF. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci Technol 2014; 48: 1–12.
  • 27. Li JY, Cleveland M, Ziemba LD, Griffin RJ, Barsanti KC, Pankow JF and Ying Q. Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmos Environ 2015; 102: 52–61.
  • 28. Gao JJ, Tian HZ, Cheng K, Lu L, Zheng M, Wang SX, Hao JM, Wang K, Hua SB, Zhu CY and Wang Y. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos Environ 2015; 107: 1–8.
  • 29. Silva HG, Conceição R, Wright MD, Matthews JC, Pereira SN and Shallcross DE. Aerosol hygroscopic growth and the dependence of atmospheric electric field measurements with relative humidity. J Aerosol Sci 2015; 85: 42–51.
  • 30. Tian S, Pan Y, Liu Z, Wen T and Wang Y. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. J Hazard Mater 2014; 279: 452–460.
  • 31. Zanobetti A and Peters A. Disentangling interactions between atmospheric pollution and weather. J Epidemiol Commun H 2015; 69: 613–615.
  • 32. Vu TV, Delgado-Saborit JM and Harrison RM. Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos Environ 2015; 122: 114–132.
  • 33. Hirsikko A, Yli-Juuti T, Nieminen T, Vartiainen E, Laakso L, Hussein T and Kulmala M. Indoor and outdoor air ions and aerosol particles in the urban atmosphere of Helsinki: characteristics, sources and formation. Boreal Environ Res 2007; 12, 295–310.
  • 34. Nazaroff W.W. Indoor particle dynamics. Indoor Air 2004; 14(7): 175–83.
  • 35. Chithra VS and Shiva Nagendra SM. Particulate Matter Mass and Number Concentrations Inside a Naturally Ventilated School Building Located Adjacent to an Urban Roadway. J Inst Eng India Ser A 2014; 95(3): 143–149.
  • 36. Markowicz P and Larsson L. Influence of relative humidity on VOC concentrations in indoor air. Environ Sci Pollut Res 2015; 22: 5772–5779.
  • 37. Guo Z. A framework for modeling non-steady-state concentrations of semivolatile organic compounds indoors – II. Interactions with particulate matter. Indoor Built Environ 2014; 22(4): 685–700.
  • 38. Hussein T, Korhonen H, Herrmann E, Hämeri K, Lehtinen KEJ and Kulmala M. Emission rates due to indoor activities: indoor aerosol model development, evaluation, and applications. Aerosol Sci Tech 2005; 39: 1111–1127.
  • 39. Fang GC, Chang CN, Chu CC, Wu YS, Fu PPC, Chang SC and Yang IL. Fine (PM2.5), coarse (PM2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere 2003; 51(9): 983–991.
  • 40. Wang B, Lee SC, Ho KF and Kang YM. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Sci Total Environ 2007; 377(1): 52–60.
  • 41. Zhang J, Chen W, Li J, Yu S and Zhao W. VOCs and Particulate Pollution due to Incense Burning in Temples, China. Procedia Eng 2015; 121: 992–1000.
  • 42. Jeong CH, Evans GJ, Hopke PK, Chalupa D and Utell MJ. Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. J Air Waste Manage Assoc 2006; 56: 431–443.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07fdaa37-6ac8-4f51-ab41-aa270dded29d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.