Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work is to study the global existence in time of solutions for the tridiagonal system of reaction-diffusion by order m. Our techniques of proof are based on compact semigroup methods and some L1-estimates. We show that global solutions exist. Our investigation can be applied for a wide class of nonlinear terms of reaction.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230122
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science and Technology, Mohamed Cherif Messaadia University, B.P. 1553 Souk Ahras 41000, Algeria
autor
- Department of Mathematics, Faculty of Science and Technology, Mohamed Cherif Messaadia University, B.P. 1553 Souk Ahras 41000, Algeria
Bibliografia
- [1] N. D. Alikakos, L p-bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), no. 8, 827–868, DOI: https://doi.org/10.1080/03605307908820113.
- [2] K. Masuda, On the global existence and asymptotic behaviour of solution of reaction-diffusion equations, Hokkaido Math. J. 12 (1983), no. 3, 360–370, DOI: https://doi.org/10.14492/hokmj/1470081012.
- [3] A. Haraux and A. Youkana, On a result of K. Masuda concerning reaction-diffusion equations, Tohoku Math. J. 40 (1988), no 1, 159–163, DOI: https://doi.org/10.2748/tmj/1178228084.
- [4] S. Kouachi, Invariant regions and global existence of solutions for reaction-diffusion systems with full matrix of diffusion coefficients and nonhomogeneous boundary conditions, Georgian Math. J. 11 (2004), 349–359, DOI: https://doi.org/10.1515/GMJ.2004.349.
- [5] S. Kouachi and A. Youkana, Global existence for a class of reaction-diffusion systems, Bull. Pol. Acad. Sci. Math. 49 (2001), no. 3, 303–308.
- [6] N. Alaa and I. Mounir, Global existence for reaction diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl. 253 (2001), no. 2, 532–557, DOI: https://doi.org/10.1006/jmaa.2000.7163.
- [7] W. Bouarifi, N. Alaa, and S. Mesbahi, Global existence of weak solutions for parabolic triangular reaction-diffusion systems applied to a climate model, An. Univ. Craiova Ser. Mat. Inform. 42 (2015), no. 1, 80–97.
- [8] S. Abdelmalek, Existence of global solutions via invariant regions for a generalized reaction-diffusion system with a tridiagonal Toeplitz matrix of diffusion coefficients, Funct. Anal. Theory Methods Appl. 2 (2016), 12–27, DOI: https://doi.org/10.48550/arXiv.1411.5727.
- [9] S. Abdelmalek, Invariant regions and global solutions for reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of diffusion coefficients, Electron. J. Differential Equations 2014 (2014), no. 247, 1–14.
- [10] S. Abdelmalek, Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions, J. Appl. Math. 2007 (2007), 1–15, DOI: https://doi.org/10.1155/2007/12375.
- [11] S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A 40 (2007), no. 41, 12335–12350.
- [12] K. Abdelmalek, B. Rebiai, and S. Abdelmalek, Invariant regions and existence of global solutions to generalized m-component reaction-diffusion system with tridiagonal symmetric Toeplitz diffusion matrix, Adv. Pure Appl. Math. 12 (2021), no. 1, 1–15, DOI: https://doi.org/10.21494/ISTE.OP.2020.0579.
- [13] A. Moumeni and N. Barrouk, Existence of global solutions for systems of reaction-diffusion with compact result, Int. J. Pure Appl. Math. 102 (2015), no. 2, 169–186, DOI: https://doi.org/10.12732/ijpam.v102i2.1.
- [14] A. Moumeni and N. Barrouk, Triangular reaction-diffusion systems with compact result, Glob. J. Pure Appl. Math. 11 (2015), no. 6, 4729–4747.
- [15] A. Moumeni and M. Dehimi, Global existence’s solution of a system of reaction-diffusion, Int. J. Math. Arch. 4 (2013), no. 1, 122–129.
- [16] A. Moumeni and M. Mebarki, Global existence of solution for reaction-diffusion system with full matrix via the compactness, Glob. J. Pure Appl. Math. 12 (2016), no. 6, 4913–4928.
- [17] S. L. Hollis and J. J. Morgan, On the blow-up of solutions to some semilinear and quasilinear reaction-diffusion systems, Rocky Mountain J. Math, 24 (1994), no. 4, 1447–1465.
- [18] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New Jersey, 1964.
- [19] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, New York, 1984.
- [20] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
- [21] D. Kulkarni, D. Schmidh, and S. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Algebra Appl. 297 (1999), 63–80.
- [22] M. Andelic and C. M. da Fonseca, Sufficient conditions for positive definiteness of tridiagonal matrices revisited, Positivity 15 (2011), no. 1, 155–159.
- [23] P. Baras, J. C. Hasan, and L. Veron, Compacite de l’operateur definissant la solution d’une équation d’évolution non homogène, C. R. Acad. Sci. Paris 284 (1977), no. 14, 799–802.
- [24] S. Bonafede and D. Schmitt, Triangular reaction diffusion systems with integrable initial data, Nonlinear Anal. 33 (1998), no. 7, 785–801.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07fca120-1937-4962-8887-98e719d84052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.