Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Funkcjonalne włókna nanokompozytowe z poli(siarczku fenylenu) – wyniki wstępne
Języki publikacji
Abstrakty
Composite poly(phenylene sulphide) (PPS) fibres and nonwovens were obtained by the melt blowing method. A specially designed twin screw extruder was used which allowed to perform several mixing cycles prior to final extrusion. Multiwall carbon nanotubes (CNTs) and carbonyl iron microparticles were used as the additives. To obtain possibly good dispersion of the modifiers in the polymer melt, the CNTs were first dispersed in N-methyl-2-pyrrolidone and Fe microparticles were dispersed in polyethylene wax. Rheological characteristics of the melts and bulk composites, such as viscosity, loss and storage moduli, are similar to those reported by other groups; however, the contents of additives must be lower than in the case of bulk materials to assure satisfactory melt spinability. The fibres obtained show satisfactory mechanical characteristics and electromagnetic screening efficiency in the GHz region.
W artykule zaprezentowano kompozytowe włókna oraz włókniny z poli(siarczku fenylenu) wytwarzane metodą melt-blown. Do formowania włókien zastosowano laboratoryjną wytłaczarkę dwuślimakową, której konstrukcja pozwala na wykonanie kilku cykli mieszania polimeru przed procesem formowania włókien. Jako modyfikatory zastosowano wielościenne nanorurki węglowe (CNTs) oraz cząstki żelaza o rozdrobnieniu mikrometrycznym. W celu otrzymania możliwe dobrej dyspersji modyfikatorów w polimerze, nanorurki węglowe zostały wstępnie rozprowadzone w N-metylo pirolidonie (NMP), natomiast mikrocząstki żelaza były zdyspergowane w niskocząsteczkowym wosku polietylenowym. Wykonano charakterystykę reologiczną stopów polimerowych zawierających modyfikatory. Określono również parametry mechaniczne włókien oraz oszacowano właściwości barierowe otrzymanych włóknin. Na podstawie uzyskanych wyników można stwierdzić, iż otrzymane włókna charakteryzują się stosunkowo dobrymi parametrami mechanicznymi oraz mają właściwości ekranujące w zakresie fal elektromagnetycznych o częstotliwości rzędu GHz.
Czasopismo
Rocznik
Strony
20--26
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Łódź, Poland
autor
- Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Łódź, Poland
autor
- Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Łódź, Poland
autor
- Department of Man-Made Fibres, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Łódź, Poland
Bibliografia
- 1. Cebe P. Review of Recent Developments in Poly(Phenylene Sulfide), Polym Polym Composites 1995; 3: 239-266.
- 2. Horrocks AR and McIntosh B. Chemically resistant fibres in High-performance fibres, Hearle JWS Ed., Cambridge, England: Woodhead Publ. Ltd 2001, p.274.
- 3. Scruggs JG and Reed JO. in High Technology Fibers: Part A- Handbook of Fiber Science and Technology, Lewin M, Preston J, Eds.; Marcel Dekker, Inc.: New York, 1985, 335.
- 4. Smith WC. High Performance and High Temperature Resistant Fibers - Emphasis on Protective Clothing. www.intexa.com/downloads/hightemp.pdf
- 5. Gao Y, Fu Q, Niu L and Shi Z. Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching. J Mater Sci 2015; 50: 3622–3630.
- 6. Zhang R, Huang Y, Min M, Gao Y, Yu X, Lu A and Lu Z. Isothermal Crystallization of Pure and Glass Fiber Reinforced Poly(phenylene sulfide) Composites. Polym Compos 2009; 30: 460-466.
- 7. Yang J, Xu T, Lub A, Zhang Q, Hong Tan and Fu Q. Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Comp Sci Techn 2009; 69: 147–153.
- 8. Díez-Pascual A M, Naffakh M, Marco C and Ellis G. Rheological and Tribological Properties of Carbon Nanotube/Thermoplastic Nanocomposites Incorporating Inorganic Fullerene-Like WS2 Nanoparticles. J Phys Chem B 2012; 116: 7959−7969.
- 9. Hu Z, Li L, Sunn B, Meng S, Chen L and Zhun M. Effect of TiO2@SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers. Prog Nat Sci: Mater Int 2015; 25: 310–315.
- 10. Yu S, Wong WM, Hu X, Yang and Juay K. The Characteristics of Carbon Nanotube-Reinforced Poly(phenylene sulfide) Nanocomposites. J Appl Polym Sci 2009; 113: 3477–3483.
- 11. Hana MS, Leea YK, Leeb HS, Yunc CH and Kim WN. Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chem Eng Sci 2009; 64: 4649 – 4656.
- 12. Wang X, Tong W, Li W, Huang H, Yang J and Li G. Preparation and properties of nanocomposite of poly(phenylene sulfide)/calcium carbonate Polym Bull 2006; p57: 953–962.
- 13. Naffakh M, Diez-Pascual AM, Marco C and Ellis G. Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. J Mater Chem 2012; 22: 1418-1425.
- 14. Chou T-W, Gao L, Thostenson ET, Zhang Z and Byun J-H. An assessment of the science and technology of carbon nanotube-based fibers and composites. Comp Sci Techn 2010; 70: 1–19.
- 15. Nanofibers and nanotechnology in textiles” Brown PJ and Stevens KN Eds. Woodhead Publishing in Textiles, Cambridge, England 2007.
- 16. Song K, Zhang Z, Meng J, Green EC, Tajaddod N, Li H, Minus ML. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship. Materials, 2013; 6: 2543-2577.
- 17. Si-rui F, Yang J-h and Qiang F. Effect of multiwall carbon nanotubes on structure and properties of melt-spun PPS fibers. Acta Polym Sin 2012; 3: 012:344-350 (in Chinese).
- 18. Nilsson E, Oxfall H, Wandelt W, Rychwalski R and Hagstrom B. Melt Spinning of Conductive Textile Fibers with Hybridized Graphite Nanoplatelets and Carbon Black Filler. J Appl Polym Sci. 2013; 130: 2579-2587.
- 19. Mamunya YP, Muzychenko YV, Pissis P, Lebedev EV and Shut MI. Percolation phenomena in polymers containing dispersed iron. Polym Eng Sci. 2002; 42: 90-100.
- 20. Ling Q, Sun J, Zhao Q, and Zhou Q. Microwave-Absorbing Properties of Linear Low-Density Polyethylene/Ethylene–Octene Copolymer/Carbonyl Iron Powder Composites. J Appl Polym Sci. 2009; 111: 1911–1916.
- 21. Qiao XY et al. Effect of ”carbonyl iron” concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym Testing 2015; 47: 51-58.
- 22. Rubacha M and Zieba J. Magnetic Cellulose Fibres and Their Application in Textronics. Fibres & Textiles Eastern Europe 2007; 15: 64 – 65.
- 23. Huang YY and Terentjev EM. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 2012, 4, 275-295.
- 24. Bergin SD et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 2008; 20: 1876-1881.
- 25. Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ and Coleman JN. Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions J. Phys. Chem. B 2006; 110: 15708-15718.
- 26. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F,† Chen Y and Eklund PC. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett, 2006; 6: 1141–1145.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07f81f4d-a9f6-4240-a198-8b6ce7a2a44e