PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy efficient solutions for EAF steelmaking

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To review an advanced solutions to improve the energy efficiency of electric arc furnace (EAF), and presentation of own new efficient low-cost solutions with regard to needs of electrometallurgical complex of Ukraine. Design/methodology/approach: Numerical simulation and industrial experiment is used. The patterns and parameters of heat and mass transfer processes, hydromechanics in a steelmaking bath of an arc furnace, thermal operation of water-cooled elements and gas dynamics in EAF workspace, are the subject scope of the paper. Findings: Energy-efficient solutions for steelmaking: bath geometry, design features of water-cooled elements (WCE), distributed aspiration system, and the mid-temperature scrap preheating. Research limitations/implications: Influence of the bath depth on heat and mass transfer and heat loss by radiation; influence of the spatial structure of WCE on heat loss by radiation; the dispersion of aspiration on the amount of fugitive emissions through electrode gaps are established. Practical implications: Grounds to improve EAF melting space, water-cooled elements, aspiration system and utilization of energy loss are obtained. Use of the set of solutions in 120-ton EAF can reduce energy consumption by 56-68 kWh/ton. Originality/value: The new concepts of deep steelmaking bath, WCE with spatial structure and system of dispersed aspiration of the EAF are elaborated.
Rocznik
Strony
18--24
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • Donetsk National Technical University, 2 Shybankova Square, Pokrovsk, 85300, Ukraine
  • Institute of Electric Welding them. E.O. Patona of the NAS of Ukraine, 11 Kazimira Malevicha Str., 03150, Kyiv, Ukraine
  • “ELMET-ROLL” Private Co, P.O.Box 259, Kyiv, 03150, Ukraine
  • Institute of Electric Welding them. E.O. Patona of the NAS of Ukraine, 11 Kazimira Malevicha Str., 03150, Kyiv, Ukraine
  • National Metallurgical Academy of Ukraine, 4 Gagarina str., Dnipro, 49600, Ukraine
Bibliografia
  • [1] Global steel report/US Department of Commerce, International Trade Administration, July 2016, 15.
  • [2] Yu. Toulouevski, I. Zinurov, Innovation in Elcetric Arc Furnaces. Scientific Basis for Selection, Springer-Verlag, Berlin, 2010, 258.
  • [3] Yu. Toulouevski, I. Zinurov, Fuel Arc Furnace (FAF) for Effective Scrap Melting, Springer, 2017, 94.
  • [4] Yu. Toulouevski, I. Zinurov, Electric Arc Furnace with Flat Bath, Achievements and Prospects. Springer, Heidelberg-New York-London, 2015, 132.
  • [5] G. Stovpchenko, Yu. Projdak, L. Kamkina, Y. Grishchenko, A. Savjuk, l. Dereveancenco, O. Kucherenko, Low carbon steel manufacture in EAF steelmaking shop, Archives of Metallurgy and Materials 53/2 (2008) 531-534.
  • [6] M. Dorndorf, M. Liese, R. Granderath, C. Schrade, High efficient energy recovery solutions for melt shops, La Metallurgia ltaliana 9 (2016) 24-31.
  • [7] M. Marcozzi, M. Guzzon, The evolution of preheating and the importance of the hot heel in supersized EAF systems, MPT International 3 (2011) 82-91.
  • [8] Ecologically-Friendly and Economical Arc Furnace "EcoArc", JFE Tech. Report, no. 3, 2004, 70-71.
  • [9] Eco-friendly and efficient: COSS Continuously Optimized Shaft System, Available at: http://www.fuchstechnology.net/en/fulfillment/furnace-systems/coss-furnace.html (accessed 30.09.2017).
  • [10] A. Müller, J. Apfel, H. Beile, First results with the Quantum electric arc furnace at Tyasa in Mexico. Chernye Metally 12 (2015).
  • [11] T. Lehner, A. Friedacher, L. Gould, W. Fingerhut, Low-Cost Solutions for Removal of Dioxin from EAF Offgas, La Metallurgia ltaliana 4 (2004) 67-70.
  • [12] R. Gottardi, S. Mjani, A. Partyka, B. Engin, Elektrolichtbogenofen erreicht Produktionsrate 320 t-h Stahl und Eisen 128/8 (2008) 19-24 (in German).
  • [13] U. Falkenreck, W. Weischedel, New scrap-based steelmaking process predominantly using primary energy, MPT International 3 (2007) 52-55.
  • [14] S. Timoshenko, Computer modeling bath geometry to improve energy efficiency of electric arc furnace, System Technologies. Regional Collection of Scientific Works: Dnipro 3/104 (2016) 33-39.
  • [15] J. Howell, M. Pinar Menguc, R. Siegel, Thermal Radiation Heat Transfer, 5th Edition, CRC Press, Taylor & Francis Group, 2011, 987.
  • [16] M. Kawakami, R. Takatani, L. Brabie, Heat and mass transfer analysis of scrap melting in steel bath, Tetsuto-Hagane 85/9 (1999) 658-665.
  • [17] A. Ghosh, Secondary Steelmaking. Principles and Applications, CRC Press , Boca Raton-London-New York-Washington D.C, 2000, 344.
  • [18] J. Li, N. Provatas, Kinetics of scrap melting in liquid steel: multi piece melting, Metallurgical and Material Transactions 39B/4 (2008) 268-279.
  • [19] K. Kruger, A. Ehrbar, K. Timm, Schlackenan backungen und thermische Verluste emes Drcbstrofens, Stahl und Eisen 9 (1998) 63-67 (in German).
  • [20] S. Timoshenko, Analysis of energy efficient solutions of a small capacity electric arc furnace and their synthesis in a new generation 15-ton unit Modern Problems of the Metallurgy. Regional Collection of Scientific Works: Dnipro 20 (2017) 78-87.
  • [21] N. Timoshenko, A. Semko, S. Timoshenko, Modeling of electric arc furnace off-gas removal system, Ironmaking & Steelmaking 41/4 (2014) 257-261.
  • [22] A.G. Guézennec, J.C. Huber, F. Patisson, Ph. Sessiecq, J.P. Birat, D. Ablitzer, Dust formation by buble-burst phenomenon at the surface or liquid steel bath, ISIJ International 44/8 (2004) 1328-1333.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07f7dab6-e45f-4f45-82b4-f47d031e4759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.