PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the loading pattern of the PWR core using genetic algorithms and multi-purpose fitness function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel confi guration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (keff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the fi rst fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.
Czasopismo
Rocznik
Strony
147--151
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Warsaw University of Technology Faculty of Physics Koszykowa 75 Str., 00-665, Warsaw, Poland
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska 21/25 Str., 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology Faculty of Physics Koszykowa 75 Str., 00-665, Warsaw, Poland
Bibliografia
  • 1. Israeli, E., & Gilad, E. (2017). Novel genetic algorithms for loading pattern optimization using state-of-the-art operators and a simple test case. J. Nucl. Eng. Radiat. Sci., 3(3), 1–10. DOI: 10.1115/1.4035883.
  • 2. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
  • 3. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Guest editorial. Mach. Learn., 3(2), 95–99. DOI: 10.1007/BF01920603.
  • 4. Jayalal, M. L., Murty, S. A. V. S., & Baba, M. S. (2014). A survey of genetic algorithm applications in nuclear fuel management. J. Nucl. Eng. Technol., 4(1), 45–62.
  • 5. Pereira, C. M. N. A., Schirru, R., & Martinez, A. S. (2000). Genetic algorithms applied to nuclear reactor design optimization. In Da Ruan (Ed.), Fuzzy systems and soft computing in nuclear engineering (pp. 315–334). Springer. https://doi.org/10.1007/978-3-7908-1866-6_14.
  • 6. Martín-del-Campo, C., Palomera-Pérez, M. Á., & François, J. L. (2009). Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization. Ann. Nucl. Energy, 36(10), 1553–1559. https://doi.org/10.1016/j.anucene.2009.07.013.
  • 7. Khoshahval, F., & Fadaei, A. (2012). Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement. Ann. Nucl. Energy, 47, 62–68. DOI: 10.1016/j.anucene.2012.04.020.
  • 8. Yilmaz, S., Ivanov, K., Levine, S., & Mahgerefteh, M. (2006). Application of genetic algorithms to optimize burnable poison placement in pressurized waterreactors. Ann. Nucl. Energy, 33(5), 446–456. DOI:10.1016/j.anucene.2005.11.012.
  • 9. Huo, X., & Xie, Z. (2005). A novel channel selection method for CANDU refuelling based on the BPANN and GA techniques. Ann. Nucl. Energy, 32(10), 1081–1099. DOI: 10.1016/j.anucene.2005.03.003.
  • 10. Mishra, S., Modak, R. S., & Ganesan, S. (2009). Optimization of thorium loading in fresh core of Indian PHWR by evolutionary algorithms. Ann. Nucl. Energy, 36(7), 948–955. DOI: 10.1016/j.anucene.2009.03.003.
  • 11. Massachusetts Institute of Technology. (2018). BEAVRS – Benchmark for Evaluation and Validation of Reactor Simulations. Rev. 2.0.2. MIT Computational Reactor Physics Group. Available from https://crpg.mit.edu/sites/default/files/css_injector_images_image/BEAVRS_2.0.2_spec.pdf.
  • 12. Kubiński, W., Darnowski, P., & Chęć, K. (2021). The development of a novel adaptive genetic algorithm for the optimization of fuel cycle length. Ann. Nucl. Energy, 155, art. ID 108153. DOI: 10.1016/j.anucene.2021.108153.
  • 13. Downar, T., Xu, Y., Seker, V., & Hudson, N. (2010). PARCS v3.0 U.S. NRC Core Neutronics Simulator.Theory manual. USNRC.
  • 14. Downar, T., Xu, Y., Seker, V., & Hudson, N. (2010). PARCS v3.0 U.S. NRC Core Neutronics Simulator. User manual. USNRC. Available from https://www.nrc.gov/docs/ML1016/ML101610098.pdf.
  • 15. Darnowski, P., & Pawluczyk, M. (2019). Analysis of the BEAVRS PWR benchmark using SCALE and PARCS. Nukleonika, 64(3), 87–98. DOI: 10.2478/nuka-2019-0011.
  • 16. US Nuclear Regulatory Commission. (2005). Westinghouse technology systems manual. Section 2.2 – Power distribution limits. Rev 0508. USNRC.Available from https://www.nrc.gov/docs/ML1122/ML11223A208.pdf.
  • 17. Anglart, H. (2011). Applied reactor technology. Stockholm: KTH Royal Institute of Technology.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07f69257-fb71-4456-9ca8-b77a96aa9969
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.