Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: A review regarding the mechanisms of metal-ceramic join is presented. Design/methodology/approach: The impact of the air-abrasion parameters on the mechanical bond strength of the ceramic crowns was discussed. The presence of opaque on the chemical bond was analysed. Research of the influence of the difference in the coefficient of thermal expansion values on the metal-ceramic bond was included. The methods of testing the bond strength were analysed. Findings: The metal substructure-dental ceramic bond strength is affected by all types of bond. In bond strength, 3-point bending test and shear test are mainly used. Created samples simulate the ceramic crowns veneered on one side. The role of physical bond on ceramic crowns veneered around metal substructure is unknown. Research limitations/implications: The prosthetic restorations with the ceramic surrounding whole the metal substructure are commonly used. The impact of shrinkage in the cylindrical deposition of the ceramic on metal substructure should be analysed. Practical implications: Numerical analysis and FEM simulation can be helpful in the analysis of the physical bond between the metal substructure and the dental ceramic around it. Originality/value: The impact of the type of the bond to metal-ceramic bond strength is presented, taking into account the cognitive gap in the influence of the coefficient of thermal expansion on the cylindrical placement of ceramic on the substructure.
Wydawca
Rocznik
Tom
Strony
5--14
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
- [1] Y. Ucar, Z. Aksahin, C. Kurtoglu, Metal ceramic bond after multiple castings of base metal alloy, The Journal of Prosthetic Dentistry 102 (2009) 165-171, doi: 10.1016/S0022-3913(09)60139-6.
- [2] M. Ozcan, Fracture reasons in ceramic-fused-to-metal restorations, Journal of Oral Rehabilitation 30 (2003) 265-269, doi: 10.1046/j.l365-2842.2003.01038.x.
- [3] E.C. Combe, Introduction to dental material science, Sanmedica, Warszawa, 1997 (in Polish).
- [4] R. Craig, Dental materials, Elsevier Urban & Partner, Wroclaw, 2008 (in Polish).
- [5] K. Beer-Lech, K. Pałka, A. Skic, B. Surowska, K. Golacki, Effect of recasted material addition on the quality of metal-ceramic bond: a macro-, micro-, and nanostudy, Advances in Materials Science and Engineering (2018) 3271950 doi: 10.1155/2018/ 3271950.
- [6] S.K. Makhija, N.C. Lawson, G.H. Gilbert, M.S. Litaker, J.A. McClelland, D.R. Louis, V.V. Gordan, D.J. Pihlstrom, C. Meyerowitz, R. Mungia, M.S. McCracken, Dentist material selection for single-unit crowns: Findings from the National Dental Practice- Based Research Network, Journal of Dentistry 55 (2016) 40-47. doi: 10.1016/j.jdent.2016.09.010.
- [7] M. Bagby, S.J. Marshall, G.W. Marshall, Metal ceramic compatibility: A review of the literature, The Journal of Prosthetic Dentistry 63 (1990) 21-25, doi: 10.1016/0022-3913 (90)90259-F.
- [8] B. Surowska, Metal biomaterials and metal-ceramic connections in dental applications, Lublin University of Technology Publishing House, Lublin, 2009 (in Polish).
- [9] M. Parchańska-Kowalik, The influence of surface chemical treatment of titanium on its connection with dental ceramics, PhD Thesis, Medical University of Lodz, Łódź, 2015 (in Polish).
- [10] C.S. Wang, K.K. Chen, K. Tajima, Y. Nagamatsu, H. Kakigawa, Y. Kozono, Effects of sandblasting media and steam cleaning on bond strength of titanium- porcelain, Dental Materials Journal 29 (2010) 381-391.
- [11] S. Majewski, Reconstruction of teeth with permanent restorations, Publisher of the Prothetic Development Foundation, Krakow, 2005 (in Polish).
- [12] M. Bagby, S.J. Marshall, G.W. Marshall, Metal ceramic compatibility: a review of the literature, The Journal of Prosthetic Dentistry 63 (1990) 21-25, doi: 10.1016/0022-3913(90)90259-F.
- [13] M. Ozcan, Fracture reasons in ceramic-fused-to-metal restorations, Journal of Oral Rehabilitation 30 (2003) 265-269, doi: 10.1046/j.l365-2842.2003.01038.x.
- [14] M.M. Aboras, A. Muchtar, C.H. Azhari, N. Yahaya, Types of failures in porcelain-fused-to-metal dental restoration, in: I. Lackovic, D. Vasic (Eds.), Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, Springer International Publishing, Cham, 2015, 345-348. doi: 10.1007/978-3-319-11128-5_86.
- [15] S. Majewski, S. Prylinski, Materials and technologies of contemporary dental prosthetics, Czelej, Lublin, 2013 (in Polish).
- [16] T. Ciaputa, A. Ciaputa, Basics of prosthetic work. Permanent work, frame dentures, combined work, Elamed, Katowice, 2005 (in Polish).
- [17] K. Makuch, R. Koczorowski, Biocompatibility of titanium and its alloys used in dentistry, Dental and Medical Problems 47 (2010) 81-88 (in Polish).
- [18] R. Orlicki, B. Klaptocz, Titanium and its alloys - properties, application in dentistry and methods of processing, Dental Engineering - Biomaterials 1 (2003) 3-8 (in Polish).
- [19] J.S. Vamnes, T. Morken, S. Helland, N.R. Gjerdet, Dental gold alloys and contact hypersensitivity, Contact Dermatitis 42 (2000) 128-133.
- [20] R.R. Wang, A. Fenton, Titanium for prosthodontic applications: a review of the literature, Quintessence International 27 (1996) 401-408.
- [21] W. Szymanski, K. Pietnicki, L. Klimek, Possibilities of surface evaluation of prosthetic elements after abrasive blasting, in: Biomaterials, Mechanics and Scientific Experiment in Dentistry, Zabrze, 2011, 122¬148 (in Polish).
- [22] I. Al-Hussaini, K.A. Al-Wazzan, Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium, Journal of Prosthetic Dentistry 94 (2005) 350-356.
- [23] M.J. Reyes, Y. Oshida, C.J. Andres, T. Barco, S. Hovijitra, D. Brown, Titanium-porcelain system. Part III: Effects of surface modification on bond strengths, Bio-Medical Materials and Engineering 11 (2001) 117-136.
- [24] Y. Oshida, C.A. Munoz, M.M. Winkler, A. Hashem, M. Itoh, Fractal dimension analysis of aluminum oxide particle for sandblasting dental use, Bio-Medical Materials and Engineering 3 (1993) 117-126.
- [25] T. Papadopoulos, A. Tsetsekou, G. Eliades, Effect of aluminum oxidesandblasting on cast commercially pure titanium surfaces, European Journal of Prostho- dontics and Restorative Dentistry 7 (2003) 15-21.
- [26] W. Szymański, M. Gołębiowski, L. Klimek, The impact of abrasive blasting parameters on the geometric structure of the surface, Stomatological Magazine 9 (2011) 201-205 (in Polish).
- [27] M. Gołębiowski, K. Pietnicki, L. Klimek, The impact of abrasive blasting parameters on the amount of abrasive particles embedded in the surface of the titanium alloy, Stomatological Magazine 6 (2010) 34¬38 (in Polish).
- [28] M. Gołębiowski, The impact of abrasive blasting parameters on the quality of the combination of ceramics and titanium, PhD Thesis, Medical University of Lodz, Łódź, 2010 (in Polish).
- [29] M. Hajduga, D. Barwikowska, The effect of sandblasting the surface of crowns on the quality of connection with ceramics, Modem Dental Technician 3 (2007) 40-45 (in Polish).
- [30] R. de Melo, A. Travassos, M. Neisser, Shear bond strengths of a ceramic system to alternative metal alloys, The Journal of Prosthetic Dentistry 93 (2005) 64-69.
- [31] Standard, ISO 9693:1999, 1999.
- [32] T. Kulunk, M. Kurt, ę. Ural, §. Kulunk, S. Baba, Effect of different air-abrasion particles on metal- ceramic bond strength, Journal of Dental Sciences 6 (2011) 140-146, doi: 10.1016/j.jds.2011.05.003.
- [33]K. Pietnicki, E. Wolowiec-Korecka, L. Klimek, Modeling strength of the connection the metal substrate to the dental ceramics depending on the parameters of the prior abrasive blasting, Mechanic 8¬9 (2015) 266-269, doi: 10.17814/mechanik.2015.8- 9.382.
- [34] M. Gołębiowski, A. Sobczak-Guzenda, W. Szy¬mański, L. Klimek, The influence of abrasive blasting parameters of the titanium surface on the contact angle and free surface energy, Materials Engineering 31/4 (2010) 978-980 (in Polish).
- [35] Ó. Inan, A. Acar, S. Halkaci, Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium, Journal of Biomedical Materials Research Part B: Applied Biomaterials 78B (2006) 393-400, doi: 10.1002/jbm.b.30500.
- [36] M.G. Tróia, G.E.P. Henriques, M.A.A. Nóbilo, M.F. Mesquita, The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy, Dental Materials 19 (2003) 790-796, doi: 10.1016/ S0109-5641(03)00027-7.
- [37] K. Pietnicki, E. Wolowiec-Korecka, L. Klimek, Modeling of the number of stubble stuck elements after abrasive jet machining-processing, Archives of Foundry Engineering 11 (2011) 51-54.
- [38] K. Banaszek, K. Pietnicki, L. Klimek, The impact of abrasive blasting parameters on the number of abrasive particles embedded in the surface of the nickel-chromium alloy, Materials Engineering 32/4 (2011) 312-315 (in Polish).
- [39] Z. Cai, N. Bunce, M.E. Nunn, T. Okabe, Porcelain adherence to dental cast CP titanium: effects of surface modifications, Biomaterials 22 (2001) 979-986.
- [40] Y.S. Al-Jabbari, S. Zinelis, G. Eliades, Effect of sandblasting conditions on alumina retention in representative dental alloys, Dental Materials Journal 31 (2012) 249-255.
- [41] J.L. Gilbert, D.A. Covey, E.P. Lautenschlager, Bond characteristics of porcelain fused to milled titanium, Dental Materials Journal 10 (1994) 134-140.
- [42] L. Guo, X. Liu, J. Gao, J. Yang, T. Guo, Y. Zhu, Effect of surface modifications on the bonding strength of titanium-porcelain, Materials and Manufacturing Processes 25 (2010) 710-717.
- [43] M. Parchańska-Kowalik, E. Wolowiec-Korecka, L. Klimek, Effect of chemical surface treatment of titanium on its bond with dental ceramics, The Journal of Prosthetic Dentistry 120/3 (2018) 470-475, doi: 10.1016/j.prosdent.2017.11.025.
- [44] M.C. Lin, K.L. Tung, S.C. Lin, H.H. Huang, Bonding of dental porcelain to non-cast titanium with different surface treatments, Dental Materials Journal 31 (2012) 933-940.
- [45] M. Hajduga, D. Danel, Bonding characteristics of metal-opaque-ceramic, Current Problems of Biomechanics 4 (2010) 59-64 (in Polish).
- [46] M. Hajduga, T. Zdziech, The analysis of a structural prosthetic connection ceramics-metal, Current Problems of Biomechanics 2 (2008) 71-78 (in Polish).
- [47] D. Jom, J.N. Waddell, M.V. Swain, The influence of opaque application methods on the bond strength and final shade of PFM restorations, Journal of Dentistry 38 (2010) el43-el49, doi: 10.1016/j.jdent.2010.08.016.
- [48] M.D. Al Amri, I.A. Hammad, Shear bond strength of two forms of opaque porcelain to the metal substructure, King Saud University Journal of Dental Sciences, 3 (2012) 41-48, doi: 10.1016/j.ksujds. 2012.05.001.
- [49] S.E. Elsaka, I.M. Hamouda, Y.A. Elewady, O.B. Abouelatta, M.V. Swain, Effect of chromium interlayer on the shear bond strength between porcelain and pure titanium, Dental Materials 26 (2010) 793-798, doi: 10.1016/j.dental.2010.04.004.
- [50] M. Walczak, B. Surowska, J. Bieniaś, Durability test of rice the metal-ceramics connection to application in dental prosthetics, Operation and Reliability 2/2005 (2005) 67-71.
- [51] B. Dejak, M. Kacprzak, B. Suliborski, B. Śmielak, The structure and some properties of dental ceramics used in all-ceramic restorations in the light of literature, Prosthodontics 56 (2006) 471-477 (in Polish).
- [52] H. Matraszek, A. Stoch, A. Majewski, C. Paluszkiewicz, A. Adamczyk, A. Trybalska, Chemical and structural analysis of the low-melting components of dental porcelain Triceram and Vita Titankeramik, Materials Engineering 5 (2009) 378-383 (in Polish).
- [53] H. Kupper, Adhesive restorations made of titanium, in: T. Von Kerschbaum (Ed.), Adhesive prosthetics, bridges, hooks, rails, veneers, Urban & Partner, Wroclaw, 1999 (in Polish).
- [54] Z. Pang, S. Yu, J. Xu, Study of effect of quenching deformation influenced by 17CrNiMo6 gear shaft of carburization, Physics Procedia 50 (2013) 103-112, doi: 10.1016/j.phpro.2013.11.018.
- [55] S. Rymkiewicz, J. Wilczyńska, F.D. Basmadij, Z. Bereznowski, Examination of areas endangered by the destruction of dental ceramics in prosthetic metal-porcelain crowns using computer simulation and finite element methods. Preliminary research, Prosthodontics 60 (2010) 55-60 (in Polish).
- [56] C. Sipahi, M. Ozcan, Interfacial shear bond strength between different base metal alloys and five low fusing feldspathic ceramic systems, Dental Materials Journal 31 (2012) 333-337, doi: 10.4012/dmj.2011-143.
- [57] D.M. Schweitzer, G.R. Goldstein, J.L. Ricci, N.R.F.A. Silva, E.L. Hittelman, Comparison of bond strength of a pressed ceramic fused to metal versus feldspathic porcelain fused to metal, Journal of Prosthodontics 14 (2005) 239-247, doi: 10.UU/j.1532-849X.2005. 00052.x.
- [58] I.A. Hammad, Y.F. Talic, Designs of bond strength tests for metal-ceramic complexes: review of the literature, The Journal of Prosthetic Dentistry 75 (1996) 602-608.
- [59] D.H. Anthony, A.P. Burnett, D.L. Smith, M.S. Brooks, Shear test for measuring bonding in cast gold alloy- porcelain composites, Journal of Dental Research 49 (1970) 27-33, doi: 10.1177/00220345700490012601.
- [60] J.S. Shell, J.P. Nielsen, Study of the bond between gold alloys and porcelain, Journal of Dental Research 41 (1962) 1424-1437, doi: 10.1177/00220345620410062101.
- [61] J.R. Gavelis, S.B. Lim, A.D. Guckes, J.D. Morency, R.B. Sozio, A comparison of the bond strength of two ceramometal systems, The Journal of Prosthetic Dentistry 48 (1982) 424-428.
- [62] M. Gołębiowski, E. Wołowiec, L. Klimek, Airbome- particle abrasion parameters on the quality of titanium-ceramic bonds, Journal of Prosthetic Dentistry 113 (2015) 453-459.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07f65a3f-34fc-490a-bc85-c32429eade07