PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear analysis of a hoist tower for seismic loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza nieliniowa wieży wyciągowej na obciążenia sejsmiczne
Języki publikacji
EN
Abstrakty
EN
In recent years, the intensity of the loads caused by mining activity has increased in Poland. This exploitation is often carried out in urbanized areas, so their operation on structures is not only a social problem, but also a challenge for engineers. Many of the surface facilities safe use affects the failure-free operation of the mine. The paper presents the results of representative measurements of surface vibrations from mining areas in Poland and earthquakes and their comparison. Particular attention was paid to the values of PGA/PGV ratios and the most commonly used methods for dynamic calculation of the structure. The last part of the work presents an experimentally verified dynamical model of the selected RC skip tower. The forced vibrations of the model were analysed by taking representative earthquakes and mining origin tremors. Time history non-linear analysis and push over methods were used. The nonlinear concrete model was adopted in the analyses. The results show that pushover analysis is not able to capture the seismic demands imposed by far-field or near-fault ground motions, especially for short-period systems for which it can lead to significant errors in the estimation of the seismic demands. The results confirmed the qualitative results of the linear analysis. The carried out inventory of cracks to the skip tower also allowed their location in bearing elements of the skip tower. The results of non-linear numerical analyses allowed us to assess the safety of the structure.
PL
Dodatkowym obciążeniem działającym na konstrukcje budowlane są drgania przenoszone przez grunt. Z reguły takie konstrukcje, gdy znajdują się poza obszarami trzęsienia ziemi, nie są przystosowane do takich dodatkowych obciążeń. Na terenach dotkniętych wstrząsami górniczymi konstrukcje nie były projektowane na takie obciążenia. W projekcie uwzględniono tylko obciążenia stałe i ciężar własny, obciążenia technologiczne oraz obciążenia od podmuchów wiatru. W ostatnich latach w Polsce wzrosła intensywność obciążeń powodowanych działalnością górniczą. Eksploatacja ta często prowadzona jest na terenach zurbanizowanych, dlatego ich eksploatacja i wpływ na budynki staje się nie tylko problemem społecznym, ale także wyzwaniem dla inżynierów. Ich zadaniem jest zapewnienie bezpieczeństwa konstrukcji i osób przebywających w tych budynkach. Wiele obiektów naziemnych znajduje się bezpośrednio na terenach kopalni. Ich bezpieczne użytkowanie wpływa na bezawaryjną prace kopalni. Awarie obiektów powierzchniowej infrastruktury budowlanej kopalni prowadzą do dużych strat finansowych i powodują problemy społeczne. W pracy przedstawiono wyniki reprezentatywnych pomiarów drgań powierzchniowych z terenów górniczych w Polsce. Drgania te były spowodowane najintensywniejszymi wstrząsami górniczymi, jakie wystąpiły podczas podziemnej eksploatacji kopalni węgla kamiennego i rud miedzi w Polsce. Wyniki pomiarów in-situ tych drgań porównano z zapisami drgań z wybranych trzęsień ziemi. Szczególną uwagę zwrócono na wartości wskaźnika PGA/PGV, a także różnice charakteryzujące drgania powierzchniowe indukowane podziemną eksploatacją górniczą i wstrząsy sejsmiczne oraz czas trwania intensywnej fazy drgań. Następnie przedstawiono najczęściej stosowane metody obliczeń dynamicznych konstrukcji. W ostatniej części pracy zaprezentowano numeryczny model dynamiczny wybranej żelbetowej konstrukcji wieży wyciągowej.
Rocznik
Strony
177--198
Opis fizyczny
Bibliogr. 62 poz., il., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
Bibliografia
  • [1] R.W. Clough, J. Penzien, Dynamics of structures. New York: Mc Graw-Hill Book, 1975.
  • [2] M.A. Khan, Earthquake-Resistant Structures: Design, Build, and Retrofit. Waltham: Elsevier, 2013, DOI: 10.1016/C2009-0-19143-2.
  • [3] O. Deck, M. Al Heib, F. Homand, “Taking the soil-structure interaction into account in assessing the loading of a structure in a mining subsidence area”, Engineering Structures, 2003, vol. 25, no. 4, pp. 435-448, DOI: 10.1016/S0141-0296(02)00184-0.
  • [4] F. Khosravikia, M. Mahsuli, M.A. Ghannad, “The effect of soil-structure interaction on the seismic risk to buildings”, Bulletin of Earthquake Engineering, 2018, vol. 16, no. 9, pp. 3653-3673, DOI: 10.1007/s10518-018-0314-z.
  • [5] P.K. Singh, M.P. Roy, “Damage to surface structures due to blast vibration”, International Journal of Rock Mechanics and Mining Sciences, 2010, vol. 47, no. 6, pp. 949-961, DOI: 10.1016/j.ijrmms.2010.06.010.
  • [6] C.P. Lu, L.M. Dou, B. Liu, Y.S. Xie, H.S. Liu, “Microseismic low-frequency precursor effect of bursting failure of coal and rock”, Journal of Applied Geophysics, 2012, vol. 79, pp. 55-63, DOI: 10.1016/J.JAPPGEO.2011.12.013.
  • [7] R.A. Stewart, W.U. Reimold, E.G. Charlesworth, W.D. Ortlepp, “The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa”, Tectonophysics, 2001, vol. 337, no. 3-4, pp. 173-190, DOI: 10.1016/S0040-1951(01)00028-2.
  • [8] P. Konicek, K. Soucek, L. Stas, R. Singh, “Long-hole destress blasting for rockburst control during deep underground coal mining”, International Journal of Rock Mechanics and Mining Sciences, 2013, vol. 61, pp. 141-153, DOI: 10.1016/j.ijrmms.2013.02.001.
  • [9] A.V. Lovchikov, “Review of the strongest rockbursts and mining-induced earthquakes in Russia”, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 572-575, DOI: 10.1134/S1062739149040072.
  • [10] E. Maciag, K. Kuzniar, T. Tatara, “Response spectra of ground motions and building foundation vibrations excited by Rockbursts in the LGC region”, Earthquake Spectra, 2016, vol. 32, no. 3, DOI: 10.1193/020515 EQS022M.
  • [11] D. Olszewska, “The acceleration response spectra for Legnica-Glogow copper district”, Technical Transactions, 2017, vol. 9, pp. 99-115, 2017, DOI: 10.4467/2353737XCT.17.151.7163.
  • [12] Z. Zembaty, et al., “A system to mitigate deep mine tremor effects in the design of civil infrastructure”, International Journal of Rock Mechanics and Mining Sciences, 2015, vol. 74, pp. 81-90, DOI: 10.1016/J.IJRMMS.2015.01.004.
  • [13] F. Pachla, A. Kowalska-Koczwara, T. Tatara, K. Stypuła, “The influence of vibration duration on the structure of irregular RC buildings”, Bulletin of Earthquake Engineering, 2019, vol. 17, no. 6, pp. 3119-3138, DOI: 10.1007/s10518-018-00546-4.
  • [14] T. Tatara, Odporność dynamiczna obiektów budowlanych w warunkach wstrząsów górniczych. Dynamic resistance of buildings in mining tremors. Kraków: Wydawnictwo Politechniki Krakowskiej im. Tadeusza Kościuszki, 2012 (in Polish).
  • [15] K. Kuźniar, T. Tatara, “Drgania pochodzenia górniczego gruntu i fundamentu budynku w ocenie ich szkodliwości. Vibrations of mining origin of the ground and building foundation in the assessment of their harmfulness”, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energia Polskiej Akademii Nauk, 2016, vol. 94, pp. 5-14 (in Polish).
  • [16] F. Pachla, T. Tatara, “Odporność zabudowy mieszkalnej i gospodarczej na wpływy eksploatacji górniczej w obszarze górniczym KWK Janina. Resistance of residential and rural buildings due to mining exploitation in the coal mining area”, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energia Polskiej Akademii Nauk, 2017, vol. 101, pp. 45-60 (in Polish).
  • [17] T. Tatara, F. Pachla, P. Kubon, “Experimental and numerical analysis of an industrial RC tower”, Bulletin of Earthquake Engineering, 2017, vol. 15, no. 5, pp. 2149-2171, DOI: 10.1007/s10518-016-0053-y .
  • [18] T. Tatara, P. Kubon, “Theoretical and experimental investigation of the steel hoist tower”, in Proceedings of the 2009: 5th International Conference Concrete and Concrete Structures, C&CS 2009, 15-16 October 2009, Zilina, Slovakia. EDIS - University of Zilina, 2009, pp. 393-400.
  • [19] EN 1998-1:2004 Eurocode 8 Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, 2004.
  • [20] T. Tatara, F. Pachla, “Analysis of the dynamic response of masonry buildings with irregularities of localization of bearing elements due to mining shocks” in Seismic Behaviour and Design of Irregular and Complex Civil Structures II. Geotechnical, Geological and Earthquake Engineering, vol 40, Z. Zembaty, M. De Stefano, Eds. Cham: Springer International Publishing, 2016, pp. 275-287, DOI: 10.1007/978-3-319-14246-3_25.
  • [21] Z. Zembaty, “Rockburst induced ground motion-a comparative study”, Soil Dynamics and Earthquake Engineering, 2004, vol. 24, no. 1, pp. 11-23, DOI: 10.1016/j.soildyn.2003.10.001.
  • [22] W. Kowalski, E. Maciąg, T. Tatara, “Normalized response spectra for mining tremors and their application”, in ECEE 1998: Proceedings of the: Eleventh European Conference on Earthquake Engineering 1998, 96-11 September 1998, Paris, France, P. Bish, et al., Eds. Rotterdam: Balkema, 1998.
  • [23] L. Czerwionka, T. Tatara, “Wzorcowe spektra odpowiedzi z wybranych obszarów GZW. Standard response spectra from chosen mining regions at Upper Silesian Coalfield”, Czasopismo Techniczne. Budownictwo, 2007, vol. 104, no. 2-B, pp. 11-18 (in Polish).
  • [24] D. Vamvatsikos, C.A. Cornell, “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, 2002, vol. 31, no. 3, pp. 491-514, DOI: 10.1002/EQE.141.
  • [25] C.W. Lin, “Time History Input Development for the Seismic Analysis of Piping Systems”, Journal of Pressure Vessel Technology, 1980, vol. 102, no. 2, pp. 212-218, DOI: 10.1115/1.3263322.
  • [26] F. Naeim, Ed., The Seismic Design Handbook. Boston: Kluwer, 2001, DOI: 10.1007/978-1-4615-1693-4.
  • [27] G. Harsha, S.A. Raza, “Seismic Vulnerability of RC Building With and Without Soft Storey Effect Using Pushover Analysis”, International Journal of Modern Engineering Research (IJMER), 2014, vol. 4, no. 9, pp. 32-47.
  • [28] F.C. Day, A.W.C. Oretaa, “Seismic Vulnerability Assessment of Soft Story Irregular Buildings Using Pushover Analysis”, Procedia Engineering, 2015, vol. 125, pp. 925-932, DOI: 10.1016/J.PROENG.2015.11.103.
  • [29] M.N. Aydinoglu, “A response spectrum-based nonlinear assessment tool for practice: Incremental Response Spectrum Analysis (IRSA)”, Journal of Earthquake Technology, 2007, vol. 44, no. 1, pp. 169-192.
  • [30] K. Gupta, Response Spectrum Method in Seismic Analysis and Design of Structures. London, England: Routledge, 1990, DOI: 10.1201/9780203740781.
  • [31] M. Berrah, E. Kausel, “Response spectrum analysis of structures subjected to spatially varying motions”, Earthquake Engineering and Structural Dynamics, 1992, vol. 21, no. 6, pp. 461-470, DOI: 10.1002/EQE.4290210601.
  • [32] P. Fajfar, “A Nonlinear Analysis Method for Performance-Based Seismic Design”, Earthquake Spectra, 2000, vol. 16, no. 3, pp. 573-592, DOI: 10.1193/1.1586128.
  • [33] A.K. Chopra, R.K. Goel, “A modal pushover analysis procedure for estimating seismic demands for buildings”, Earthquake Engineering and Structural Dynamics, 2002, vol. 31, no. 3, pp. 561-582, DOI: 10.1002/EQE.144.
  • [34] E. Thorenfeldt, A. Tomazewic, J.J. Jensen, “Mechanical properties of high-strength concrete and application in design”, in Proceeding of the 1987: Symposium on Utilization of High-Strength Concrete. 1987, pp. 149-159.
  • [35] M. Fafard, B. Massicotte, “Geometrical interpretation of the arc-length method”, Computers and Structures, 1993, vol. 46, no. 4, pp. 603-615, DOI: 10.1016/0045-7949(93)90389-U.
  • [36] S.P. Venkateshan, P. Swaminathan, “Numerical Integration”, in Computational Methods in Engineering. Elsevier, 2014, pp. 317-373, DOI: 10.1016/B978-0-12-416702-5.50009-0.
  • [37] M.D. Trifunac, “Earthquake response spectra for performance based design - A critical review”, Soil Dynamics and Earthquake Engineering, 2012, vol. 37, pp. 73-83, DOI: 10.1016/J.SOILDYN.2012.01.019.
  • [38] O.A. López, J.J. Hernández, R. Bonilla, A. Fernández, “Response Spectra for Multicomponent Structural Analysis”, Earthquake Spectra, 2019, vol. 22, no. 1, pp. 85-113, DOI: 10.1193/1.2162898.
  • [39] Z. Zembaty, R. Jankowski, A. Cholewicki, J. Szulc, “Trzesienia ziemi w Polsce w 2004 roku. Earhquakes in Poland in 2004”, Czasopismo Techniczne. Budownictwo, 2007, vol. 104, no. 2-B, pp. 115-126 (in Polish).
  • [40] E. Juhásová, P. Pezzoli, E.M. Da Rin, R. Sofronie, Z. Zembaty, ”Resistance of brick building model with arches before and after retrofitting”, in ECEE 1998: Proceedings of the : Eleventh European Conference on Earthquake Engineering 1998, 96-11 September 1998, Paris, France, P. Bish, et al., Eds. Rotterdam: Balkema, 1998.
  • [41] T. Furumura, S. Takemura, S. Noguchi, et al., “Strong ground motions from the 2011 off-the Pacific-Coastof-Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nationwide seismic network”, Landslides, 2011, vol. 8, pp. 333-338, DOI: 10.1007/s10346-011-0279-3.
  • [42] S.K. Kufner, et al., “Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction”, Earth and Planetary Science Letters, 2017, vol. 461, pp. 127-140, DOI: 10.1016/j.epsl.2016.12.043.
  • [43] A. Akinci, L. Malagnini, F. Sabetta, “Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy”, Soil Dynamics and Earthquake Engineering, 2010, vol. 30, no. 5, pp. 320-335, DOI: 10.1016/J.SOILDYN.2009.12.006.
  • [44] E. Chioccarelli, I. Iervolino, “Near-source seismic demand and pulse-like records: A discussion for L’Aquila earthquake”, Earthquake Engineering and Structural Dynamics, 2010, vol. 39, no. 9, pp. 1039-1062, DOI: 10.1002/eqe.987.
  • [45] M.D. Trifunac, A.G. Brady, “A study on the duration of strong earthquake ground motion”, Bulletin of the Seismological Society of America, 1975, vol. 65, no. 3, pp. 581-626, DOI: 10.1785/BSSA0650030581.
  • [46] R.D. Koehler, G.A. Carver, Alaska Seismic Hazards Safety Commission, Active faults and seismic hazards in Alaska. Alaska Division of Geological & Geophysical Surveys, 2018, DOI: 10.14509/29705.
  • [47] M. Wyss, “A search for precursors to the Sitka, 1972, earthquake: Sea level, magnetic field, and P-residuals”, Pure and Applied Geophysics, 1975, vol. 113, no. 1, pp. 297-309, DOI: 10.1007/BF01592919.
  • [48] M.M. Schell, L.J. Ruff, “Rupture of a seismic gap in southeastern Alaska: the 1972 Sitka earthquake (Ms 7.6)”, Physics of the Earth and Planetary Interiors, 1989, vol. 54, no. 3-4, pp. 241-257, DOI: 10.1016/0031-9201(89)90246-X.
  • [49] L.R. Sykes, “Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians”, Journal of Geophysical Research, 1971, vol. 76, no. 32, pp. 8021-8041, DOI: 10.1029/JB076i032p08021.
  • [50] R.A. Page, “The Sitka, Alaska, earthquake of 1972: An expected visitor”, Earthquake Information Bulletin, 1973, vol. 5, no. 5, pp. 4-9.
  • [51] D. Tocher, “The Alaska earthquake of July 10, 1958: Movement on the Fairweather fault and field investigation of southern epicentral region”, Bulletin of the Seismological Society of America, 1960, vol. 50, no. 2, pp. 267-292, DOI: 10.1785/BSSA0500020267.
  • [52] G. Mutke, J. Chodacki, “Charakterystyka parametrów drgań od najsilniejszych wstrząsów regionalnych w GZW w aspekcie kryteriów oceny intensywności w oparciu o skalę GSIGZW. Characteristics of vibration parameters from the strongest regional shocks in the GZW in terms of intensity assessment criteria based on the GSIGZW scale”, Scientific Papers of Central Mining Institute, Mining and Environment, 2010, no. 4, pp. 65-80 (in Polish).
  • [53] K. Stec, A. Barański, “Charakterystyka i ocena skutków drgań wstrząsów w kopalniach Kompanii Węglowej SA o pikowym przyśpieszeniu drgań gruntu powyżej 0.5 m/s2. Characteristics and evaluation of the shock vibration effects in the mines of Kompania Węglowa SA with the peak acceleration of ground vibrations above 0.5 m/s2”, Scientific Papers of Central Mining Institute, Mining and Environment, 2010, no. 4, pp. 81-100 (in Polish).
  • [54] K. Kuzniar, T. Tatara, “The ratio of response spectra from seismic-type free-field and building foundation vibrations: the influence of rockburst parameters and simple models of kinematic soil-structure interaction”, Bulletin of Earthquake Engineering, 2020, vol. 18, no. 3, pp. 907-924, DOI: 10.1007/s10518-019-00734-w.
  • [55] T. Tatara, F. Pachla, “Influence of mining tremors on industrial structures”, in Proceedings of 9th International Conference on New Trends in Statics and Dynamics of Buildings, 20-21 October, Bratislava, Slovakia, N. Jendzelovsky, M. Nagyova, Eds. Bratislava: Slovak University of Technology in Bratislawa, 2011, pp. 153-156.
  • [56] T. Tatara, F. Pachla, “Influence of earthquakes and mining related surface vibrations on RC skip tower”, in WCEE 2012: Proceedings of the 15th World Conference on Earthquake Engineering, WCEE 2012, 24-28 September 2012, Lisbon, Portugal, Eds. London: Oxford, 2012.
  • [57] “DIANA (2017) Finite Element Analysis User’s Manual release 10.2 - Bing”. [Online]. Available: https://manuals.dianafea.com/d102/Analys/Analys.html. [Accessed: 19. May 2022].
  • [58] C.G. Broyden, “The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations”, IMA Journal of Applied Mathematics, 1970, vol. 6, no. 1, pp. 76-90, DOI: 10.1093/IMAMAT/6.1.76.
  • [59] R. Fletcher, “A new approach to variable metric algorithms”, The Computer Journal, 1970, vol. 13, no. 3, pp. 317-322, DOI: 10.1093/COMJNL/13.3.317.
  • [60] D. Goldfarb, “A family of variable-metric methods derived by variational means”, Mathematics of Computation, 1970, vol. 24, no. 109, pp. 23-26, DOI: 10.1090/S0025-5718-1970-0258249-6.
  • [61] D.F. Shanno, “Conditioning of quasi-Newton methods for function minimization”, Mathematics of Computation, 1970, vol. 24, no. 111, pp. 647-656, DOI: 10.1090/S0025-5718-1970-0274029-X.
  • [62] R. Fletcher, Practical Methods of Optimization. New York: John Wiley and Sons, 2000.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07eff243-dbb2-4348-a8f1-cc8648ee7a5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.