PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotating orbits of pendulum in stochastic excitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method to extract energy from an excitation which is stochastic in nature is presented. The experimental rig comprises a pendulum, and a vertical excitation is provided by a solenoid. The control input assumed in the form of a direct current motor, and another motor, used in reverse, acts as a generator. The stochastic excitation has been achieved by varying the time interval between switching the RLC circuit on and off according to a random distribution. Such non-linear vertical excitations act on an oscillatory system from which a pendulum is pivoted. The Pierson-Moskowitz spectrum has been chosen as the random distribution while an inverse transform technique has been used for generation of the random excitation signal in LabVIEW environment. Moreover, a bang-bang control algorithm has been implemented to facilitate rotational motion of the pendulum. Experimental observations have been made for various noise levels of vertical excitations, and their implication on energy generation has been discussed. A positive amount of energy has been extracted for a minimal amount of the control input.
Rocznik
Strony
717--730
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • University of Nottingham Malaysia Campus, Department of Mechanical, Materials and Manufacturing Engineering, Semenyih, Malaysia
autor
  • University of Nottingham Malaysia Campus, Department of Mechanical, Materials and Manufacturing Engineering, Semenyih, Malaysia
autor
  • University of Nottingham Malaysia Campus, Department of Mechanical, Materials and Manufacturing Engineering, Semenyih, Malaysia
Bibliografia
  • 1. Alevras P., Yurchenko D., 2014, Stochastic rotational response of a parametric pendulum coupled with an SDOF system, Probabilistic Engineering Mechanics, 37, 124-131
  • 2. Alevras P., Yurchenko D., Naess A., 2014, Stochastic synchronization of rotating parametric pendulums, Meccanica, 49, 8, 1945-1954
  • 3. Blackburn J.A., 2006, Noise activated transitions among periodic states of a pendulum with a vertically oscillating pivot, mediated by a chaotic attractor, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462, 2067, 1043-1052
  • 4. Blackburn J.A., Grønbech-Jensen N., Smith H.J.T., 1995, Stochastic noise and chaotic transients, Physical Review Letters, 74, 6, 908
  • 5. Brzeski P., Perlikowski P., Yanchuk S., Kapitaniak T., 2012, The dynamics of the pendulum suspended on the forced Duffing oscillator, Journal of Sound and Vibration, 331, 24, 5347-5357
  • 6. Dadone P., Lacarbonara W., Nayfeh A.H., Vanlandingham H.F., 2003, Payload pendulation reduction using a variable-geometry-truss architecture with LQR and fuzzy controls, Journal of Vibration and Control, 9, 805-837
  • 7. De Paula A.S., Savi M.A., Wiercigroch M., Pavlovskaia E., 2012, Bifurcation control of a parametric pendulum, International Journal of Bifurcation and Chaos, 22, 1250111
  • 8. Devroye L., 1986, Non-uniform Random Variate Generation, Springer-Verlag, New York
  • 9. Horton B.W., Wiercigroch M., 2008, Effects of heave excitation on rotations of a pendulum for wave energy extraction, IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering, 117-128
  • 10. Kecik K., Warminski J., 2011, Dynamics of an autoparametric pendulum-like system with a nonlinear semiactive suspension, Mathematical Problems in Engineering
  • 11. Litak G., Borowiec M., Wiercigroch M., 2008, Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions, Dynamical Systems, 23, 3, 259-265
  • 12. Mendrela E.A., Pudlowski Z.J., 1992, Transients and dynamics in a linear reluctance selfoscillating motor, IEEE Transactions on Energy Conversion, 7, 1, 183-191
  • 13. Najdecka A., 2013, Rotating dynamics of pendula systems for energy harvesting from ambient vibrations, Ph.D. Thesis, University of Aberdeen, Scotland
  • 14. Pierson W.J., Moskowitz L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii, Journal of Geophysical Research, 69, 24, 5181-5190
  • 15. Teh S.-H., Chan K.-H., Woo K.-C., Demrdash H., 2015, Rotating a pendulum with an electromechanical excitation, International Journal of Non-Linear Mechanics, 70, 73-83
  • 16. Vaziri V., Najdecka A., Wiercigroch M., 2014, Experimental control for initiating and maintaining rotation of parametric pendulum, The European Physical Journal Special Topics, 223, 795-812
  • 17. Warminski J., Kecik K., 2006, Autoparametric vibrations of a nonlinear system with pendulum, Mathematical Problems in Engineering
  • 18. Warminski J., Kecik K., 2009, Instabilities in the main parametric resonance area of a mechanical system with a pendulum, Journal of Sound and Vibration, 322, 3, 612-628
  • 19. Yukoi Y., Hikihara T., 2011a, Start control of parametric pendulum into periodic rotation, Transactions of the Institute of Systems, Control and Information Engineers, 24, 54-60
  • 20. Yukoi Y., Hikihara T., 2011b, Tolerance of start-up control of rotation in parametric pendulum by delayed feedback, Physics Letters A, 375, 1779-1783
  • 21. Yurchenko D., Alevras P., 2013, Stochastic dynamics of a parametrically base excited rotating pendulum, Procedia IUTAM, 6, 160-168
  • 22. Yurchenko D., Naess A., Alevras P., 2013, Pendulum’s rotational motion governed by a stochastic Mathieu equation, Probabilistic Engineering Mechanics, 31, 12-18
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07e948a5-481c-4017-8574-fc2fb317572f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.