PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Congruence-Based Perspective on Finite Tree Automata

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide new insights on the determinization and minimization of tree automata using congruences on trees. From this perspective, we study a Brzozowski's style minimization algorithm for tree automata. First, we prove correct this method relying on the following fact: when the automata-based and the language-based congruences coincide, determinizing the automaton yields the minimal one. Such automata-based congruences, in the case of word automata, are defined using pre and post operators. Now we extend these operators to tree automata, a task that is particularly challenging due to the reduced expressive power of deterministic top-down (or equivalently co-deterministic bottom-up) automata. We leverage further our framework to offer an extension of the original result by Brzozowski for word automata.
Wydawca
Rocznik
Strony
1--47
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • IMDEA Software Institute Madrid, Spain
  • IMDEA Software Institute Madrid, Spain
autor
  • IMDEA Software Institute Madrid, Spain
Bibliografia
  • [1] Comon H, Dauchet M, Gilleron R, Jacquemard F, Lugiez D, L¨oding C, Tison S, Tommasi M. Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata,2008. Release November, 18th 2008.
  • [2] Gécseg F, Steinby M. Minimal ascending tree automata. Acta Cybern., 1978. 4(1):37-44.
  • [3] Gécseg F, Steinby M. Tree Automata. Akadéniai Kiad´o, Budapest, Hungary, 1984.
  • [4] Abdulla PA, Legay A, d’Orso J, Rezine A. Tree regular model checking: A simulation-based approach. J. Log. Algebraic Methods Program., 2006. 69(1-2):93-121. doi:10.1016/j.jlap.2006.02.001.
  • [5] Bouajjani A, Habermehl P, Rogalewicz A, Vojnar T. Abstract regular (tree) model checking. Int. J. Softw. Tools Technol. Transf., 2012. 14(2):167-191. doi:10.1007/s10009-011-0205-y.
  • [6] Knight K, May J. Applications of weighted automata in natural language processing. In: Handbook of Weighted Automata, pp. 571-596. Springer, 2009. doi:10.1007 / 978-3-642-01492-5 14.
  • [7] Hosoya H. Foundations of XML processing: the tree-automata approach. Cambridge University Press, 2010. doi:10.1017 / CBO9780511762093.
  • [8] Abdulla PA, H¨ogberg J, Kaati L. Bisimulation Minimization of Tree Automata. Int. J. Found. Comput. Sci., 2007. 18(4):699-713. doi:10.1142/S0129054107004929.
  • [9] Almeida R, Hol´ık L, Mayr R. Reduction of Nondeterministic Tree Automata. In: TACAS, volume 9636 of Lecture Notes in Computer Science. Springer, 2016 pp. 717-735. doi:10.1007/978-3-662-49674-9_46.
  • [10] Hogberg J, Maletti A, May J. Backward and forward bisimulation minimization of tree automata. Theor. Comput. Sci., 2009. 410(37):3539-3552. doi:10.1016/j.tcs.2009.03.022.
  • [11] Brainerd WS. The Minimalization of Tree Automata. Inf. Control., 1968. 13(5):484-491.
  • [12] Björklund J, Cleophas L. A Taxonomy of Minimisation Algorithms for Deterministic Tree Automata. J. UCS, 2016. 22(2):180-196. ISSN:0948-695X.
  • [13] Nivat M, Podelski A. Minimal Ascending and Descending Tree Automata. SIAM J. Comput., 1997. 26(1):39-58.
  • [14] Virágh J. Deterministic ascending tree automata I. Acta Cybern., 1980. 5(1):33-42.
  • [15] Brzozowski JA. Canonical regular expressions and minimal state graphs for definite events. Mathematical Theory of Automata, 1962. 12(6):529-561. ID:118363215.
  • [16] Ganty P, Guti´errez E, Valero P. A Congruence-based Perspective on Automata Minimization Algorithms. In: MFCS, volume 138 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2019 pp. 77:1-77:14.
  • [17] Kozen D. On the Myhill-Nerode theorem for trees. Bull. EATCS, 1992. 47:170-173.
  • [18] Brzozowski JA, Tamm H. Theory of ´atomata. Theor. Comput. Sci., 2014. 539:13-27. doi:10.1016/j.tcs.2014.04.016.
  • [19] Cleophas L. Tree algorithms: two taxonomies and a toolkit. Ph.D. thesis, Department of Mathematics and Computer Science, 2008. doi:10.6100/IR633481.
  • [20] Gécseg F, Steinby M. Tree Automata, 2015. 1509.06233.
  • [21] Courcelle B, Niwinski D, Podelski A. A Geometrical View of the Determinization and Minimization of Finite-State Automata. Math. Syst. Theory, 1991. 24(2):117-146. doi:10.1007/BF02090394.
  • [22] Ganty P, Gutiérrez E, Valero P. A Quasiorder-Based Perspective on Residual Automata. In: MFCS, volume 170 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2020 pp. 40:1-40:14. arXiv:2007.00359 [cs.FL].
  • [23] Carme J, Gilleron R, Lemay A, Terlutte A, Tommasi M. Residual Finite Tree Automata. In: Developments in Language Theory, volume 2710 of Lecture Notes in Computer Science. Springer, 2003 pp. 171-182. doi:10.1007 / 3-540-45007-6_13.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07e10551-ecb1-45c5-ae04-344f2741ad7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.