PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the potential of three microalgae taxonomic groups of Chlorophyta, Cyanoprokaryota and Bacillariophyceae for biogas production. Biogas potential was assessed in mesophilic anaerobic digestion batch tests over a period of 20 days. The cumulative biogas yield (CBY) of Chlorophyta and Cyanoprocaryota was respectively 396.21 mL/g Volatile Solids (VS) and 382.45 mL/g VS. Bacillariophyceae digestion showed lower biogas production of 357.07 mL/g VS. The highest cumulative methane yield (CMY) of 241.25 mL CH4/g VS was recorded for Cyanoprocaryota biomass, which was signifi cantly higher (p<0.05) than the other two types of microalgae. The highest methane content in biogas of 63.08% was observed with Cyanoprokaryota. Chemical composition of biomass as well as biogas productivity are infl uenced by algal taxonomy.
Słowa kluczowe
Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Department of Environmental Engineering
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Department of Environmental Engineering
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Department of Environmental Engineering
Bibliografia
  • 1. Bohutskyi, P. & Bouwer, E. (2012). Biogas production from algae and Cyanobacteria through anaerobic digestion: A review, analysis and research needs, In: Lee, J.W. (Ed.), Advanced Biofuels and Bioproducts, Springer, New York, pp. 873-976.
  • 2. Calli, B., Mertoglu, B., Inanc, B. & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40, pp. 1285-1292.
  • 3. Cirne, D.G., Paloumet, X., Björnsson, L., Alves, M.M. & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste - effects of lipid concentration. Renevable Energy, 32, pp. 965-975.
  • 4. Dębowski, M., Grala, A., Zieliński M., Dudek, M. (2012). Efficiency of the methane fermentation process of macroalgae biomass originating from Puck Bay. Archives of Environmental Protection, 38, pp. 99-107.
  • 5. Frear, C., Wang, Z.W., Li, C.I. & Chen, S.I. (2011). Biogas potential and microbial population distributions influshed dairy manure and implications on anaerobic digestion technology. Journal of Chemical Technology and Biotechnology, 86, pp. 145-152.
  • 6. Gerken, H.G., Donohoe, B. & Knoshaug, E.P. (2013). Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, 237, pp. 239-253.
  • 7. Golueke, C., Oswald, W. & Gotaas, H. (1957). Anaerobic digestion of algae. Applied and Environmental Microbiology, 5, pp. 47-55.
  • 8. Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C. & Abbriano, R. (2012) The place of diatoms in the biofuels industry. Biofuels, 3, pp. 221-240.
  • 9. Johansson, D. & Azar, C.A. (2007). Scenario based analysis of land competition between food and bioenergy production in the us. Climate Change, 82, pp. 267-291.
  • 10. Klassen, V., Blifernez-Klassen, O., Hoekzema, Y., Mussgnug, J.H. & Kruse O. (2015). A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass. Journal of Biotechnology, 215, pp. 44-51.
  • 11. Klocke, M., Mahnert, P., Mundt, K., Souidi K. & Linke, B. (2007). Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Systematic and Applied Microbiology, 30, pp. 139-151.
  • 12. Lee, K., Chantrasakdakul, P., Kim, D., Kong, M. & Park, K.Y. (2014). Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. Waste Management, 34, pp. 1035-1040.
  • 13. Mandal, S. & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84, pp. 281-291.
  • 14. Mao, C., Feng, Y., Wang, X. & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Review, 45, pp. 540-555.
  • 15. Miller D.H., Miller, M. & Lamport, D.T.A. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas. Science, 176, pp. 918-920.
  • 16. Montingelli, M.E., Tedesco, S. & Olabi A.G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Review, 43, pp. 961-972.
  • 17. Mussgnug, J. H., Klassen, V., Schlüter, A. & Kruse O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, pp. 51-56.
  • 18. Nakano, Y., Urade, Y. & Urade, R.K. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilis. Journal of Biochemistry, 102, pp. 1053-1063.
  • 19. Passos, F., Uggetti, E., Carrere, H. & Ferrer, I. (2014). Pretreatment of microalgae to improve biogas production: a review. Bioresource Technology, 172, pp. 403-412.
  • 20. Ras, M., Lardon, L., Bruno, S., Bernet, N. & Steyer J.P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102, pp. 200-206.
  • 21. Roberts, K.P., Heaven, S. & Banks, C.J. (2016). Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion. Renewable Energy, 87, pp. 744-753.
  • 22. Schlüter, A., Bekel, T., Diaz, N.N., Dondrup, M., Eichenlaub, R., Gartemann, K.H., Krahn, I., Krause, L., Kromeke, H., Kruse, O., Mussgnug, J.H., Neuweger, H., Niehaus, K., Puhler, A., Runte, K.J., Szczepanowski, R., Tauch, A., Tilker, A., Viehover, P. & Goesmann, A. (2008). The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. Journal of Biotechnology, 136, pp. 77-90.
  • 23. Seadi, T.A., Rutz, D., Janssen, R. & Drosg, B. (2013). Biomass resources for biogas production, In: Wellinger, A., Murphy, J. & Baxter, D. (Eds.) The Biogas Handbook, Science, production and applications, Woodhead Publishing, United Kingdom, 19-51.
  • 24. Seadi, T.A., Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S. & Janssen, R. (2008). Biogas Handbook, University of Southern Denmark Esbjerg, Denmark 2008.
  • 25. Sheffer, M., Fried, A., Gottlieb, H.E., Tietz, A. & Avron, M. (2008). Lipid composition of the plasma-membrane of the halotolerant alga Dunaliella salina. Biochimica et Biophysica Acta, 857, pp. 165-172.
  • 26. van Eykelenburg, C., Fuchs, A. & Schmidt, G.H. (1980). Some theoretical considerations on the in vitro shape of the cross-walls in Spirulina spp. Journal of Theoretical Biology, 82, pp. 271-282.
  • 27. Wang, M. & Park, C. (2015). Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass and Bioenergy, 80, pp. 30-37.
  • 28. Ward, A.J., Lewis, D.M. & Green, F.B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research, 5, pp. 204-214.
  • 29. Wirth, R., Lakatos, G., Böjti, T., Maróti, G., Bagi, Z., Kis, M., Kovács, A., Ács, N., Rákhely, G. & Kovács, K.L. (2015). Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus. Journal of Biotechnology, 215, pp. 52-61.
  • 30. Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M. & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 201, pp. 159-165.
  • 31. Yen, H.W. & Brune D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, pp. 130-134.
  • 32. Zamalloa, C., Boon, N. & Verstraete, W. (2012). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Applied Energy, 92, pp. 733-738.
  • 33. Zhao, B., Ma J., Zhao, Q., Laurens, L., Jarvis, E., Chen, S. & Frear, C. (2014). Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresource Technology, 161, pp. 423-430
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07dbdc92-fc2e-4cf6-b163-88782959c1bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.