PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation on flexural behaviors of i-shaped jointed composite plates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the flexural behaviors of a composite plate jointed with I profile jointing element have been carried out experimentally and numerically. As a load type, four point flexural tests have been used in order to study performances of jointed composite plates under bending load. The effects of jointing geometry parameters ratio of the width of lock to width of semi-specimen (b/W), lock middle/end width to the width of lock (z/b) and the length of lock to the width of semi-specimen (h/2W) have been investigated. According to the investigation optimum jointing parameters have been found with the h/2w ratio of 0.5, b/w ratio of 0.5 and z/b ratio of 0.5. Abaqus 6.11 finite element program has been used in order to support the results obtained from the experiments. Damages have been mostly seen on jointing lock elements.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Kinikli 20070 Denizli, Turkey
Bibliografia
  • 1. Adams RD, Strength predictions for lap joints, especially with composite adherents. Journal of Ad-hesion 1989, 30, 219-242.
  • 2. Pan Y, Chen Y, Shen Q, Pan C, Effect of carbon fiber surface modification on the flexural mechanical properties of carbon fiber reinforced polyetheretherketone biocomposites. Journal of Polymer Engineering 2015, 35/7, 657-663.
  • 3. Harman AB, Wang CH, Improved design methods for scarf repairs to highly strained composite aircraft structure. Composite Structures 2008, 75, 132-144.
  • 4. Chen HS, The static and fatigue strength of bolted joints in composites with hygrothermal cycling. Composite Structures 2001, 52, 295-306.
  • 5. Avila FA, Bueno PO, An experimental and numerical study on adhesive joints for composites. Com-posite Structures 2004, 64, 531-537.
  • 6. Bahei-El-Din YA, Dvorak GJ, New designs of adhesive joints for thick composite laminates. Composite Science and Technology 2001, 61, 19-40.
  • 7. Grassi M, Cox B, Zhang X, Simulation of pin-reinforced single-lap composite joints. Composite Science and Technology 2006, 66, 1623-1638.
  • 8. Aktas A, Dirikolu MH, An experimental and numerical ınvestigation of strength characteristics of carbon-epoxy pinned-joint plates. Composite Science and Technology 2004, 64, 1605-1611.
  • 9. Megueni A, Tounsi A, Adda Bedia E, Evolution of the stress ıntensity factor for patched crack with bonded hygrothermal aged composite repair. Materials and Design 2007, 28, 287-293.
  • 10. Choi JH, Chun YJ, Failure load prediction of mechanically fastened composite joints. Journal of Composite Materials 2003, 37, 2163-2177.
  • 11. Altan G, Topcu M, Experimental and numerical assessment of the improvement of the load-carrying capacities of butterfly-shaped coupling components in composite structures. Journal of Mechanical Science and Technology 2010, 6, 1245-1254.
  • 12. Kumar VRL, Bhat MR, Murthy CRL, Experimental analysis of composite single-lap joints using digital image correlation and comparison with theoretical models. Journal of Reinforced Plastics and Composites 2013, 32, 1858-1876.
  • 13. Kim TH, Kweon JH, Choi JH, An experimental study on the effect of overlap length on the failure of composite-to-aluminum single-lap bonded joints. Journal of Reinforced Plastics and Composites 2008, 27, 1071-1081.
  • 14. Seo DW, Lim JK, Tensile, bending and shear strength distributions of adhesive-bonded butt joint specimens. Composites Science and Technology 2005, 65, 1421–1427.
  • 15. Nader JW, Dagher HJ, Lopez-Anido R, Size effects on the bending strength of fiber-reinforced polymer matrix composites. Journal of Reinforced Plastics and Composites 2011, 30, 309-316.
  • 16. Dawood M, Taylor E, Rizkala S, Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Composite Structures 2010, 92, 950-963.
  • 17. Khalili SMR, Shokuhfar A, Hoseini SD, Bidkhori M, Khalili S, Mittal RK, Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads. International Journal of Adhesion & Adhesives 2008, 28, 436- 444.
  • 18. Ding K, Dhanasekar M, Flexural behaviour of bonded-bolted butt joints due to bolt looseness. Ad-vances in Engineering Software 2007, 38, 598-606.
  • 19. Abad J, Franco JM, Celorrio R, Lezaun L, Design of experiments and energy dissipation analysis for a contact mechanics 3D model of frictional bolted lap joints. Advances in Engineering Software 2012, 45, 42-53.
  • 20. Aydin H, Temiz S, Experimental and Numerical Strength Analysis of Double Lap Joints Subjected to Tensile Loads. Materials Testing 2014, 56/2, 160-168.
  • 21. Jones RM, Mechanics of Composite Material. Philadelphia: Taylor& Francis, 1999.
  • 22. Gibson RF, Principles of Composite Material Mechanics. McGraw-Hill Company, Singapore, 1994.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07db042b-7cd2-43f5-b0ae-92ec27c45651
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.