PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The potential of SLM technology for processing magnesium alloys in aerospace industry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selective Laser Melting (SLM) of magnesium alloys is the technology undergoing dynamic development in many research centres. The results are promising and make it possible to manufacture defect-free material with better properties than those offered by the manufacturing technologies used to date. This review aims to evaluate present state as well as main challenges of using Laser Powder Bed Fusion (L-PBF) for processing magnesium alloys as an alternative way to conventional technolo-gies to manufacture parts in the aerospace industry. This literature review is the first one to outline information concerning the potential to use magnesium alloys in the aerospace industry as well as to summarise the results of magnesium alloy pro-cessing using AM technologies, in particular L-PBF. The available literature was reviewed to gather information about: the use of magnesium alloys in the aerospace industry-the benefits and limitations of using magnesium and its alloys, examples of applications using new processing methods to manufacture aerospace parts, the benefits and potential of using L-PBF to process metallic materials, examples of the use of L-PBF to manufacture aerospace parts, and state-of-the-art research into L-PBF processing of magnesium and magnesium alloys.
Rocznik
Strony
327--339
Opis fizyczny
Bibliogr. 97 poz., fot., rys.
Twórcy
  • Faculty of Mechanical Engineering/Centre of Advanced Manufacturing Technologies - Fraunhofer Project Center (CAMT-FPC), Wrocław University of Science and Technology, Wroclaw, Poland
autor
  • Faculty of Mechanical Engineering/Centre of Advanced Manufacturing Technologies - Fraunhofer Project Center (CAMT-FPC), Wrocław University of Science and Technology, Wroclaw, Poland
autor
  • Faculty of Mechanical Engineering/Centre of Advanced Manufacturing Technologies - Fraunhofer Project Center (CAMT-FPC), Wrocław University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] Kablov EN. Without new materials - there is no future. Metal-lurgist. 2014;57:1057–1061. https ://doi.org/10.1007/s11015-014-9844-z.
  • [2] Rokicki P, Budzik G, Kubiak K, Bernaczek J, Dziubek T, Magniszewski M, Nowotnik A, Sieniawski J, Matysiak H, Cygan R, Trojan A. Rapid prototyping in manufacturing of core models of aircraft engine blades. Aircr Eng Aerosp Technol. 2014;86:323–7. https ://doi.org/10.1108/AEAT-10-2012-0192.
  • [3] Rokicki P, Kozik B, Budzik G, Dziubek T, Bernaczek J, Przeszlowski L, Markowska O, Sobolewski B, Rzucidlo A. Manu-facturing of aircraft engine transmission gear with SLS (DMLS) method. Aircr Eng Aerosp Technol. 2016;88:397–403. https ://doi.org/10.1108/AEAT-05-2015-0137.
  • [4] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. J Mater Process Technol. 2001;117:381–5. https ://doi.org/10.1016/S0924 -0136(01)00779-8.
  • [5] Mathes JC. Magnesium alloys in the aircraft industry. Aircr Eng Aerosp Technol. 1941;13:323–6. https ://doi.org/10.1108/eb030844.
  • [6] Perry WH. American experience with magnesium alloys: some details of recent work on aircraft primary structures in magnesium. Aircr Eng Aerosp Technol. 1955;27:416–8. https ://doi.org/10.1108/eb032 639.
  • [7] Grant LB. Magnesium alloys in the U.S.A.: the development of the production of aircraft parts in this material. Aircr Eng Aerosp Technol. 1940;12:279–82. https ://doi.org/10.1108/eb030 689.
  • [8] Cieśla M, Junak G, Marek A. Fatigue characteristics of selected light metal alloys. Arch Metall Mater. 2016;61:271–4. https ://doi.org/10.1515/amm-2016-0051.
  • [9] Fleming S. An overview of magnesium based alloys for aero-space and automotive applications. Troy: Rensselaer Polytech-nic; 2012.
  • [10] S. Woo Nam, Mg-RE High Temperature Properties and Recent Research Trend of Mg-RE Alloys, Rev. Pap. (Korean J. Met. Mater.). 55 (2017) 1–9. https ://doi.org/10.3365/kjmm.2017.55.4.
  • [11] Dziadoń A, Mola R. Magnesium-trends of development of mechanical properties. Inżynieria Mater. w Obróbce Plast. 2013;XXIV:253–77.
  • [12] Lu YQ, Zhu XJ, Hu XD, Yao Y, Cai H. Effects of blowing ar on inclusion and properties of AZ61 magnesium alloy. Key Eng Mater. 2017;725:416–20. https ://doi.org/10.4028/www.scientific .net/KEM.725.416.
  • [13] Kuczmaszewski J, Zagórski I, Dziubinska A. Investigation of ignition temperature, time to ignition and chip morphology after the high-speed dry milling of magnesium alloys. Aircr Eng Aerosp Technol. 2016;88:389–96. https ://doi.org/10.1108/AEAT-02-2015-0040.
  • [14] AS8049B: Performance standard for seats in civil rotorcraft, Transport Aircraft, and General Aviation Aircraft, 2005.
  • [15] Davis B. The application of magnesium alloys in aircraft inte-riors-changing the rules. In: Magnesium technology 2015-TMS 2015 144th annual meeting & exhibition, Orlando, 2015: p. 5.
  • [16] Horner A. DOT/FAA/AR-00/12 Aircraft materials fire test hand-book. Virginia: National Technical Information Service (NTIS) Springfield; 2000.
  • [17] Marker TM. DOT/FAA/AR-11/3 Evaluating the flammability of various magnesium alloys during laboratory- and full-scale air-craft fire tests. Virginia: NationalTechnical Information Service (NTIS) Springfield; 2013.
  • [18] AS8049C: Performance standard for seats in civil rotorcraft, trans-port aircraft, and general aviation aircraft, 2015.
  • [19] Tekumalla S, Gupta M. An insight into ignition factors and mechanisms of magnesium based materials: a review. Mater Des. 2017;113:84–98. https ://doi.org/10.1016/j.matde s.2016.09.103.
  • [20] Wojtas M, Sobieszek A, Czajkowski Ł, Żurawski R. Modern materials in aerospace industry-fatigue tests of magnesium alloy control system lever of the unmanned Ilx—27. In: 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea, 25-30.09.2016; 2016. pp. 1–7.
  • [21] Dziubinska A, Gontarz A. A new method for producing magnesium alloy twin-rib aircraft brackets. Aircr Eng Aerosp Technol. 2015;87:180–8. https ://doi.org/10.1108/AEAT-10-2013-0184.
  • [22] Śliwa RE, Balawender T, Hadasik E, Kuc D, Gontarz A, Korbel A, Bochniak W. Metal forming of lightweight magnesium alloys for aviation applications. Arch Metall Mater. 2017;62:1559–66. https ://doi.org/10.1515/amm-2017-0239.
  • [23] Hombergsmeier E. Magnesium for aerospace applications. In: 2nd international conference and exhibition “Magnesium-Broad Horizons”; 2007. p. 1–13.
  • [24] Henn Y, Fein A. Project MagForming-Development of new magnesium forming technologies for the aeronautics industry. Publ Final Act Rep 2010, pp. 16–35.
  • [25] Shim J-D, Byun J-Y. Superplasticity of magnesium alloys and SPF applications. Korean J Mater Res. 2017;21:53–61.
  • [26] Bednarczyk I, Mrugała A, Tomaszewska A. Influence of plastic deformation process on the structure and properties of alloy WE43. Arch Metall Mater. 2016;61:389–92. https ://doi.org/10.1515/amm-2016-0071.
  • [27] Avvari M, Able NSM. Microstructure evolution in AZ61 alloy processed by equal channel angular pressing. Adv Mech Eng. 2016;8:168781401665182. https ://doi.org/10.1177/16878 1401665182 0.
  • [28] Gontarz A, Dziubińska A. Forming of flat parts with ribs from magnesium alloy. Aircr Eng Aerosp Technol. 2014;86:356–60. https ://doi.org/10.1108/AEAT-10-2012-0188.
  • [29] Mrugała A, Kuc D. Forming construction elements for aviation from light alloys with the use of cold extrusion in complex state of strain. Solid State Phenom. 2016;246:240–3. https ://doi.org/10.4028/www.scientific .net/SSP.246.240.
  • [30] Pu Z, Outeiro JC, Batista AC, Dillon OW, Puleo DA, Jawahir IS. Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. Int J Mach Tools Manuf. 2012;56:17–27. https://doi.org/10.1016/j.ijmac htool s.2011.12.006.
  • [31] Taltavull C, Torres B, Lopez AJ, Rodrigo P, Otero E, Rams J. Selective laser surface melting of a magnesium–aluminium alloy. 2012;85:98–101. https ://doi.org/10.1016/j.matle t.2012.07.004.
  • [32] Labisz K, Tański T, Kremzer M, Janicki D. Effect of laser alloying on heat-treated light alloys. Int J Mater Res. 2017;108:126–32. https ://doi.org/10.3139/146.11145 6.
  • [33] Chaturvedi V, Sharma A, Pandel U. Effect of mechanical vibrations on grain refinement of AZ91 Mg alloy. Mater Res Express. 2017;2017:1–11.
  • [34] Hao S, Li M, Chen J. Surface microstructure and improved wear resistance of AZ91 magnesium alloy after high current pulsed electron beam treatment. Appl Surf Sci. 2016. https ://doi.org/10.1016/j.apsus c.2016.05.137.
  • [35] Çelik İ. Structure and surface properties of Al2O3-TiO2 ceramic coated AZ31 magnesium alloy. Ceram Int. 2016;31:3–7. https ://doi.org/10.1016/j.ceram int.2016.05.162.
  • [36] Tan Q, Mo N, Jiang B, Pan F, Atrens A, Zhang MX. Oxidation resistance of Mg–9Al–1Zn alloys micro-alloyed with Be. Scr Mater. 2016;115:38–41. https ://doi.org/10.1016/j.scrip tamat.2015.12.022.
  • [37] Vlček M, Čižek J, Lukáč F, Melikhova O, Hruška P, Procházka I, Vlach M, Stuliková I, Smola B, Jager A. Effects in Mg–Zn-based alloys strengthened by quasicrystalline phase. J Phys Conf Ser. 2016. https ://doi.org/10.1088/1742-6596/674/1/01200 5.
  • [38] Wang F, Ma D, Wang Z, Mao P, Liu Z. Microstructure, mechanical properties and solidification behavior of AM50-x(Zn, Y) magnesium alloys. Jinshu Xuebao Acta Metall Sin. 2016;52:1115–22. https ://doi.org/10.11900 /0412.1961.2016.00048 .
  • [39] Nia AA, Nourbakhsh SH. Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing. Trans Indian Inst Met. 2016;69:1435–42. https ://doi.org/10.1007/s1266 6-015-0702-x.
  • [40] Qi LH, Wei XL, Zhang T, Liu J, Hou XH, Li HJ. Effect of fabrication parameters on carbon fibre reinforced magnesium matrix composite components. Mater Sci Technol. 2016;0836:1–7. https://doi.org/10.1179/17432 84715 Y.00000 00147.
  • [41] Aatthisugan I, Rose AR, Jebadurai DS. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J Magnes Alloy. 2016;5:20–5. https ://doi.org/10.1016/j.jma.2016.12.004.
  • [42] Oddone V, Boerner B, Reich S. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater. 2017;18:1–7. https ://doi.org/10.1080/14686 996.2017.12862 22.
  • [43] Thompson SM, Bian L, Shamsaei N, Yadollahi A. An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36–62. https ://doi.org/10.1016/j.addma .2015.07.001.
  • [44] Dordlofva C, Lindwall A, Törlind P. Opportunities and challenges for additive manufacturing in space applications. DS 85-1 Proceedings of NordDesign 2016, Volume 1, Trondheim, Norway, 10th–12th August 2016. (2016). https ://www.designsoci ety.org/publi cation/39317 /opportunities_and_challenges _for_addit ive_manufactur ing_in_space _applications. Accessed August 29, 2017.
  • [45] Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A. 2015;639:647–55. https ://doi.org/10.1016/j.msea.2015.05.035.
  • [46] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016. https ://doi.org/10.1080/09506608.2015.11166 49.
  • [47] Kurzynowski T, Chlebus E, Kuźnicka B, Reiner J. Parameters in selective laser melting for processing metallic powders. In: Beyer E, Morris T, editors. Proceedings of SPIE 8239 High Power Laser Materials Processing: Lasers, Beam Delivery. Diagnostics, 2012. https ://doi.org/10.1117/12.90729 2.
  • [48] Bai S, Yang L, Liu J. Manipulation of microstructure in laser additive manufacturing. Appl Phys A. 2016;122:495. https ://doi.org/10.1007/s0033 9-016-0023-x.
  • [49] Chlebus E, Kuznicka B, Kurzynowski T, Dybala B. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Mater Charact. 2011;62:488–95. https://doi.org/10.1016/j.match ar.2011.03.006.
  • [50] Rashid R, Masood SH, Ruan D, Palanisamy S, Rahman Rashid RA, Elambasseril J, Brandt M. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Addit Manuf. 2018;22:426–39. https://doi.org/10.1016/j.addma.2018.05.040.
  • [51] Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2:041101. https ://doi.org/10.1063/1.49359 26.
  • [52] Ziółkowski G, Chlebus E, Szymczyk P, Kurzac J. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Arch Civ Mech Eng. 2014;14:608–14. https ://doi.org/10.1016/j.acme.2014.02.003.
  • [53] Poprawe R, Hinke C, Meiners W, Schrage J, Bremen S, Risse J, Merkt S. Disruptive innovation through 3D printing. In: Supply chain integration challenges in commercial aerospace, Cham: Springer; 2017. p. 73–87. https ://doi.org/10.1007/978-3-319-46155 -7_6.
  • [54] Fera M, Fruggiero F, Lambiase A, Macchiaroli R. State of the art of additive manufacturing: review for tolerances, mechanical resistance and production costs. Cogent Eng. 2016. https ://doi.org/10.1080/23311 916.2016.12615 03.
  • [55] Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol. 2011;211:1146–58. https ://doi.org/10.1016/j.jmatp rotec.2011.01.018.
  • [56] Chlebus E, Kuznicka B, Dziedzic R, Kurzynowski T. Titanium alloyed with rhenium by selective laser melting. Mater Sci Eng A. 2014;620:155–63. https ://doi.org/10.1016/j.msea.2014.10.021.
  • [57] Pawlak A, Szymczyk P, Ziolkowski G, Chlebus E, Dybala B. Fabrication of microscaffolds from Ti–6Al–7Nb alloy by SLM. Rapid Prototyp J. 2015;21:393–401. https ://doi.org/10.1108/RPJ-10-2013-0101.
  • [58] Rockstroh T, Abbott D, Hix K, Mook J. Additive manufacturing at GE aviation-industrial laser solutions, (2013). http://www.indus trial -laser s.com/artic les/print /volume-28/issue -6/features/additive-manufacturing-at-geaviat ion.html. Accessed June 1, 2017.
  • [59] Bamberg J, Zenzinger G, Ladewig A. In-process control of selective laser melting by quantitativa optical tomography. In: 19th World Conference on Non Destructive Testing 2016, NDT.net, Munich, 2016. http://www.ndt.net/artic le/wcndt 2016/paper s/th1b1.pdf. Accessed 16 Jan 2019.
  • [60] Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC. High-value SLM aerospace components: from design to manufacture. Adv Mater Res. 2013;633:135–47. https ://doi.org/10.4028/www.scientific .net/AMR.633.135.
  • [61] Seabra M, Azevedo J, Araújo A, Reis L, Pinto E, Alves N, Santos R, Mortágua JP. Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Struct Integr. 2016;1:289–96. https ://doi.org/10.1016/j.prostr.2016.02.039.
  • [62] Rashid R, Masooda SH, Ruan D, Palanisamy S, Huang X, Rashid RAR. Topology optimisation of additively manufactured lattice beams for three-point bending test. In: Solid freeform fabrication 2018: Proceedings of the 29th annual international solid freeform fabrication symposium – an additive manufacturing conference, Austin, Texas, pp. 635–645.
  • [63] Kellner T. World’s first plant to print jet engine nozzles in mass production, 2014. http://www.ge.com/reports/post/91763 815095/world s-first -plant -toprint-jet-engine-nozzl es-in/. Accessed 30 Aug 2017.
  • [64] Nimbalkar S, Cox D, Visconti K, Cresko J. Life cycle energy assessment methodology, tool and case studies for additive manufacturing, 2014. http://ammo.ncms.org/docum ents/Resources/ProjectCalls/LifeCycleEnergy Assessment Methodology%2CTool%2Cand CaseStudiesforAdditiveManufacturing .pdf. Accessed August 30, 2017.
  • [65] Joshi SC, Sheikh AA. 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp. 2015;10:175–85. https ://doi.org/10.1080/17452 759.2015.11115 19.
  • [66] Additive manufacturing. A game changer for the manufacturing industry? (2013). https ://www.rolandberger.com/en/Publicatio ns/pub_additive_manufacturing_2013.html. Accessed August 30, 2017.
  • [67] U.S. Department of Energy, Chapter 6: Innovating clean energy technologies in advanced manufacturing additive manufacturing technology assessment, 2015. https ://energ y.gov/sites /prod/files/2015/11/f27/QTR20 15-6A-Addit iveManufacturing.pdf. Accessed August 30, 2017.
  • [68] Schiller GJ. Additive manufacturing for aerospace. In: 2015 IEEE Aerospace Conference. IEEE 2015. p. 1–8. https ://doi.org/10.1109/AERO.2015.71189 58.
  • [69] Aumund-Kopp C, Riou A. Introduction to additive manufacturing technology. A guide for designers and engineers, (2015) 43. www.epma.com. Accessed August 31, 2017.
  • [70] Rawal S, Brantley J, Karabudak N. Additive manufacturing of Ti–6Al–4V alloy components for spacecraft applications. In: 2013 6th International conference on recent advances in space technologies. IEEE, 2013. p. 5–11. https ://doi.org/10.1109/RAST.2013.65812 60.
  • [71] Shapiro AA, Borgonia JP, Chen QN, Dillon RP, McEnerney B, Polit-Casillas R, Soloway L. Additive manufacturing for aero-space flight applications. J Spacecr Rockets. 2016;53:952–9. https://doi.org/10.2514/1.A3354 4.
  • [72] Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng. 2015;229:2132–47. https ://doi.org/10.1177/09544 1001456879 7.
  • [73] Zhang B, Liao H, Coddet C. Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mix-ture. Mater Des. 2012;34:753–8. https ://doi.org/10.1016/j.matdes.2011.06.061.
  • [74] Jauer L, Meiners W, Poprawe R. Selective laser melting of biode-gradable metals. Eur Cells Mater. 2013;26:21.
  • [75] Gieseke M, Nölke C, Kaierle S, Maier HJ, Haferkamp H. Selective laser melting of magnesium alloys for manufacturing individual implants. In: Fraunhofer Direct Digital Manufacturing Conference 2014, 2014. p. 1–6.
  • [76] Matena J, Petersen S, Gieseke M, Teske M, Beyerbach M, Kampmann A, Escobar H, Gellrich N-C, Haferkamp H, Nolte I. Comparison of selective laser melted titanium and magnesium implants coated with PCL. Int J Mol Sci. 2015;16:13287–301. https ://doi.org/10.3390/ijms1 60613 287.
  • [77] Jauer L, Jülich B, Voshage M, Meiners W. Selective laser melting of magnesium alloys. Eur Cell Mater. 2015;vol 30(Suppl 3).
  • [78] Gieseke M, Tandon R, Kiesow T, Wessarges Y. Selective laser melting of elektron MAP 43 magnesium powder matthias. In: Rapid technology-international trade show & conference for Additive Manufacturing. Proc. 13th Rapid.Tech Conf. 14–16 June 2016, Erfurt, 2016: p. 244–252.
  • [79] Tandon R, Wilks T, Gieseke M, Noelke C, Kaierle S, Palmer T. Additive manufacturing of elektron 43 alloy using laser powder bed and directed energy deposition. In: Euro PM2015, 2015.
  • [80] Tandon R, Palmer T, Gieseke M, Noelke C, Kaierle S. Additive manufacturing of magnesium alloy powders: investigations into process development using electron MAP + 43 via laser powder bed fusion and directed energy deposition. In: Euro PM2016, Reims, 2016. p. 4–9.
  • [81] Manakari V, Parande G, Gupta M, Lopez HF. Selective laser melting of magnesium and magnesium alloy powders: a review. Met-als. 2017. https ://doi.org/10.3390/met70 10002.
  • [82] Hu D, Wang Y, Zhang D, Hao L, Jiang J, Li Z, Chen Y. Experimental investigation on selective laser melting of bulk net-shape pure magnesium. Mater Manuf Process. 2015. https ://doi.org/10.1080/10426 914.2015.10259 63.
  • [83] Pawlak A, Chlebus E. Process parameter optimization of laser micrometallurgy of aZ31 alloy. Interdiscip J Eng Sci. 2015;3:10–5.
  • [84] Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization. Arch Civ Mech Eng. 2017;17:9–18. https ://doi.org/10.1016/j.acme.2016.07.007.
  • [85] Pawlak A, Szymczyk P, Kurzynowski T, Chlebus E. Selective laser melting of magnesium AZ31B alloy powder. Rapid Prototyp J. 2019. https ://doi.org/10.1108/rpj-05-2019-0137.
  • [86] Salehi M, Maleksaeedi S, Farnoush H, Nai MLS, Meenashisund-aram GK, Gupta M. An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium. Powder Technol. 2018;333:252–61. https://doi.org/10.1016/j.powte c.2018.04.026.
  • [87] Wei K, Wang Z, Zeng X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Mater Lett. 2015;156:187–90. https ://doi.org/10.1016/j.matlet.2015.05.074.
  • [88] Shuai C, Yang Y, Wu P, Lin X, Liu Y, Zhou Y, Feng P, Liu X, Peng S. Laser rapid solidification improves corrosion behavior of Mg–Zn–Zr alloy. J Alloys Compd. 2017;691:961–9. https ://doi.org/10.1016/j.jallc om.2016.09.019.
  • [89] Proaño B, Miyahara H, Matsumoto T, Hamada S, Sakai H, Ogawa K, Suyalatu, Noguchi H. Weakest region analysis of non-combustible Mg products fabricated by selective laser melting. Theor Appl Fract Mech. 2019;103:102291. https ://doi.org/10.1016/j.tafme c.2019.102291.
  • [90] Li Y, Jahr H, Zhang XY, Leeflang MA, Li W, Pouran B, Tichelaar FD, Weinans H, Zhou J, Zadpoor AA. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Addit Manuf. 2019;28:299–311. https ://doi.org/10.1016/j.addma.2019.05.013.
  • [91] Savalani MM, Pizarro JM. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium. Rapid Prototyp J. 2016;22:115–22. https ://doi.org/10.1108/RPJ-07-2013-0076.
  • [92] Ng CC, Savalani MM, Lau ML, Man HC. Microstructure and mechanical properties of selective laser melted magnesium. Appl Surf Sci. 2011;257:7447–54. https ://doi.org/10.1016/j.apsusc.2011.03.004.
  • [93] Ng CC, Savalani MM, Man HC. Fabrication of magnesium using selective laser melting technique. Rapid Prototyp J. 2011;17:479–90. https ://doi.org/10.1108/13552 54111 11842 06.
  • [94] Chlebus E, Pawlak A, Kurzynowski T, Dybała B. Raporty Wydziału Mechanicznego Politechniki Wrocławskiej. Instruction for working with powder materials. Ser. SPR nr 192, 2016.
  • [95] Liu S, Yang W, Shi X, Li B, Duan S, Guo H, Guo J. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy. J Alloys Compd. 2019;808:151160. https ://doi.org/10.1016/j.jallc om.2019.06.261.
  • [96] Wei K, Gao M, Wang Z, Zeng X. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng A. 2014;611:212–22. https ://doi.org/10.1016/j.msea.2014.05.092.
  • [97] Mirovsky Y, Bendov A, Leibovich H, Gurman A, Yurovich Y, Diskin Y, Steckelman Y, Ramati S, Idel S, Kalman Y, Gerhard M, Rubinstein D. Clean sky: the future of the aviation industry-developments at israel aerospace industries. In: 54th israel annual conference on aerospace sciences 2014, technion israel institute of technology, Tel-Aviv, 2014. p. 1715–1723.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07da4f05-88c6-457e-b1af-5c1d1aa99f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.