PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selected physical and mechanical properties of particleboards with variable shares of nettle Urtica dioica L. lignocellulosic particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selected physical and mechanical properties of particleboards with variable shares of nettle Urtica dioica L. lignocellulosic particles. The aim of the research was to confirm the possibility of using woody particles of either young or adult nettle Urtica dioica stems as alternative raw materials in the production of particleboards. As part of the work, particleboards made out of nettle Urtica dioica particles were produced in laboratory conditions and selected physical and mechanical properties of the obtained boards were tested. The results show, that it is possible to manufacture particleboards for the furniture industry using particles of nettle (Urtica dioica L.) meeting the requirements for P2 boards according to EN 312 as long as nettle particle mass content does not exceed 50%.
PL
Wybrane właściwości fizyczne i mechaniczne płyt wiórowych o zmiennym udziale cząstek lignocelulozowych pokrzywy Urtica dioica L. Celem badań było potwierdzenie możliwości wykorzystania zdrewniałych cząstek młodych lub dorosłych łodyg pokrzywy Urtica dioica jako alternatywnego surowca do produkcji płyt wiórowych. W ramach pracy wytworzono w warunkach laboratoryjnych płyty wiórowe z cząstek pokrzywy Urtica dioica oraz zbadano wybrane właściwości fizyczne i mechaniczne otrzymanych płyt. Uzyskane wyniki wskazują, że możliwe jest wytwarzanie płyt wiórowych dla przemysłu meblarskiego z cząstek pokrzywy (Urtica dioica L.) spełniających wymagania dla płyt P2 wg EN 312, o ile udział masowy cząstek pokrzywy w płycie nie przekracza 50%.
Słowa kluczowe
Twórcy
autor
  • Faculty of Wood Technology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
  • 1. ABBÈS, F., XU, S., AND ABBÈS, B. (2022). “Characterization of Mechanical and Damping Properties of Nettle and Glass Fiber Reinforced Hybrid Composites,” Journal of Composites Science, 6(8). DOI: 10.3390/jcs6080238.
  • 2. AKGÜL, M. (2013). “Suitability of stinging nettle (Urtica dioica L.) stalks for medium density fiberboards production,” Composites Part B: Engineering, 45(1), 925–929. DOI: 10.1016/j.compositesb.2012.09.048.
  • 3. AURIGA,R., PĘDZIK, M., MROZOWSKI,R., AND ROGOZIŃSKI, T. (2022). “Hemp Shives as a Raw Material for the Production of Particleboards,” Polymers, 14(23), 1–10. DOI: 10.3390/polym14235308.
  • 4. BATTISTELLE, R. A. G., FUJINO, D. M., E SILVA, A. L. C., BEZERRA, B. S., AND DE D. VALARELLI, I. (2016). “Physical and mechanical characterization of sugarcane bagasse particleboards for civil construction,” Journal of Sustainable Development of Energy, Water and Environment Systems, 4(4), 408–417. DOI: 10.13044/j.sdewes.2016.04.0031.
  • 5. BRITO, F. M. S., SILVA, B. A., DE CARVALHO, I. M., BAÚTI, S. B., MENDES, L. M., AND GUIMARÃES,J. B. (2022). “Technological Properties of Medium Density Particleboards Produced with Peanut (Arachis Hypogaea) and Pinus Oocarpa Hulls,” Floresta e Ambiente, 29(2). DOI: 10.1590/2179-8087-FLORAM-2021-0101.
  • 6. DEEPA, R., KUMARESAN, K., AND SARAVANAN, K. (2023). “EFFECT OF SURFACE MODIFICATION OF HIMALAYAN NETTLE FIBER AND CHARACTERIZATION OF THE MORPHOLOGY , PHYSICAL AND MECHANICAL PROPERTIES,” 23(1), 1–6. DOI: 10.2478/aut-2022-0010.
  • 6. DEEPA, R., KUMARESAN, K., AND SARAVANAN, K. (2023). “EFFECT OF SURFACE MODIFICATION OF HIMALAYAN NETTLE FIBER AND CHARACTERIZATION OF THE MORPHOLOGY , PHYSICAL AND MECHANICAL PROPERTIES,” 23(1), 1–6. DOI: 10.2478/aut-2022-0010.
  • 8. DOWGIELEWICZ, S. (1954). Roślinne surowce włókiennicze, Państwowe Wydawnictwo Naukowe, Warszawa.
  • 9. EN 310. (1993). Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength, European Committee for Standardization, Brussels, Belgium.
  • 10. EN 312. (2010). Particleboards - Specifications, European Committee for Standardization, Brussels, Belgium
  • 11. EN 317. (1993). Particleboards and fiberboards – Determination of swelling in thickness after immersion in water, European Committee for Standardization, Brussels, Belgium
  • 12. EN 319. (1993). Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board, European Committee for Standardization, Brussels, Belgium.
  • 13. EN 320. (2011). Particleboards and fibreboards - Determination of resistance to axial withdrawal of screws, European Committee for Standardization, Brussels, Belgium.
  • 14. EN 323. (1993). “Wood-based panels - Determination of density,” European Committee for Standardization, Brussels, Belgium.
  • 15. EN 827. (2005). Adhesives - Determination of conventional solids content and constant mass solids content, European Committee for Standardization, Brussels, Belgium.
  • 16. FARIA, D. L., GUIMARÃES, J. C. O., PROTÁSIO, T. DE P., MENDES, L. M., AND GUIMARÃES JUNIOR,J. B. (2022). “Conventional low-density particleboards produced from Mauritia flexuosa and Eucalyptus spp. wood,” Clean Technologies and Environmental Policy, Springer Berlin Heidelberg, 24(9), 2761–2771. DOI: 10.1007/s10098-022-02350-w.
  • 17. JERÓNIMO, A., FERNANDES, M., AND SÁ, A. B. (2022). “An experimental analysis on the thermal performance of particleboards using olive stone and almond shell wastes,” Projeto Construção, (December), 207–2016.
  • 18. KIBET, T., TUIGONG, D. R., MAUBE, O., AND MWASIAGI, J. I. (2022). “Mechanical properties of particleboard made from leather shavings and waste papers,” Cogent Engineering, Cogent, 9(1). DOI: 10.1080/23311916.2022.2076350.
  • 19. KOWALUK, G., AND WRONKA, A. (2020). “Selected physical and mechanical properties of particleboards produced from lignocellulosic particles of black chokeberry (Aronia melanocarpa (Michx.) Elliott),” Annals of WULS, Forestry and Wood Technology, 112(112), 60–70. DOI: 10.5604/01.3001.0014.7692.
  • 20. KUCUKTUVEK, M., KASAL, A., KUSKUN, T., AND ERDIL, Y. Z. (2017). “Utilizing Poppy Husk-based Particleboards as an Alternative Material in Case Furniture Construction,” BioResources, 12(1), 839–852. DOI: 10.15376/biores.12.1.839-852.
  • 21. KUP, F., AND VURAL, C. (2021). “Physical and mechanical properties of particleboards produced from cotton stalk and corn stalk,” Fresenius Environmental Bulletin, 30(2), 853– 859.
  • 22. NEITZEL, N. (2023). “Effect of press temperature on oat husk particleboards bound with a dialdehyde starch adhesive,” 3–8.
  • 23. PIRAYESH, H., KHAZAEIAN, A., KHANJANZADEH, H., AND BAHRINEJAD, A. (2011). “Optimum condition of manufacturing wood-based composite from mixture of wood particles/ walnut and almond shells,” Key Engineering Materials, 471–472(May 2018), 91–96. DOI: 10.4028/www.scientific.net/KEM.471-472.91.
  • 24. RAJ, M., FATIMA, S., AND TANDON, N. (2020). “An experimental and theoretical study on environment-friendly sound absorber sourced from nettle fibers,” Journal of Building Engineering, 31(May). DOI: 10.1016/j.jobe.2020.101395.
  • 25. TAHA, I., ELKAFAFY, M. S., AND EL MOUSLY, H. (2018). “Potential of utilizing tomato stalk as raw material for particleboards,” Ain Shams Engineering Journal, Ain Shams University, 9(4), 1457–1464. DOI: 10.1016/j.asej.2016.10.003
  • 26. TAŞ, H. H., AND KUL, F. M. (2020). “Sunflower (Helianthus annuus) stalks as alternative raw material for cement bonded particleboard,” Drvna Industrija, 71(1), 41–46. DOI: 10.5552/drvind.2020.1907.
  • 27. TENE TAYO,J. L., BETTELHÄUSER, R.J., AND EURING, M. (2022). “Canola Meal as Raw Material for the Development of Bio-Adhesive for Medium Density Fiberboards (MDFs) and Particleboards Production,” Polymers, 14(17). DOI: 10.3390/polym14173554.
  • 28. WRONKA, A., AND KOWALUK, G. (2019a). “Influence of density on selected properties of furniture particleboards made of raspberry Rubus idaeus L. lignocellulosic particles,” Annals of WULS, Forestry and Wood Technology, 105(105), 113–124. DOI: 10.5604/01.3001.0013.7719.
  • 29. WRONKA, A., AND KOWALUK, G. (2019b). “Selected properties of particleboard made of raspberry Rubus idaeus L. lignocellulosic particles,” Annals of WULS, Forestry and Wood Technology, 105(105), 113–124. DOI: 10.5604/01.3001.0013.7727.
  • 30. WRONKA, A., AND KOWALUK, G. (2022). “The Influence of Multiple Mechanical Recycling of Particleboards on Their Selected Mechanical and Physical Properties,” Materials, 15(23). DOI: https://doi.org/10.3390/ma15238487.
  • 31. YUSHADA, A., NURJANNAH, S., RASIDI, R., SITI, N., AND ISHAK, W. M. F. (2018). “Mechanical properties of particleboard from seaweed (Kappaphycus alvarezii),” AIP Conference Proceedings, 2030(January). DOI: 10.1063/1.5066856.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07da44e5-c795-44fa-b106-ba987084876d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.