PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of a Toroidal Nozzle for Welding Duplex Stainless Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this research was to determine the appropriate parameters for welding two-phase duplex stainless steel (DSS) and to understand the challenges involved in the process. For welding pipes with diameters of ø25 mm and ø38 mm of steel type 1.4462, the classic tungsten inert gas (TIG) method and TIG with a toroidal shielding gas nozzle were used. The aim was to improve the durability and service life of welded joints produced using the toroidal shielding gas nozzle compared to those produced using traditional TIG methods for DSS welding. The welding process was carried out using the parameters: arc voltage 9V, welding current 105A for TIG and 80A with a toroidal shielding gas, welding speed 90 mm/min for TIG and 95 mm/min with a toroidal shielding gas. The welded elements were tested for quality properties. Tests such as visual, penetration, radiographic, and destructive tests (macroscopic, ferrite content, hardness, microscopic, diffraction, static strength, and fatigue) were conducted on the test samples prepared in the TIG process. The actual test results were compared to the acceptable values from the standards. Using a toroidal nozzle in the welding process had lowered the ferrite content in the surface layers by about 10% in comparison to the traditional TIG method. The morphology and phase arrangement of the tested welded joints varied significantly, even when utilizing a toroidal nozzle. The analysis of the determined durability showed that welding with a toroidal shielding gas nozzle provided superior results, with enhancements ranging from 4% to 132%. Furthermore, the use of a toroidal nozzle reduced gas consumption by 17% for each joint type compared to conventional welding. In terms of service life, the joints welded with a toroidal nozzle demonstrated nearly twice the longevity of those welded with traditional methods.
Twórcy
  • OLTECH, Witebska 1, 85-759 Bydgoszcz, Poland
  • Department of Mechanical Engineering, Bydgoszcz University of Science and Technology, Aleja prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Francis R., Byrne G. Duplex stainless steels – Alloys for the 21st century. Metals 2021, 11(5), 836. https://doi.org/10.3390/met11050836
  • 2. Kazakov A., Zhitenev A., Fedorov, Fomina O.V. Development of duplex stainless steels compositions. CIS Iron Steel Rev 2019, 18, 20–26. https://doi.org/10.17580/cisisr.2019.02.04
  • 3. Łabanowski J. Stale Odporne na Korozję i ich Spawalność. Wydawnictwo Politechniki Gdańskiej, 2021.
  • 4. Gunn R.N. Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing, 1997.
  • 5. Brytan Z., Niagaj J. Corrosion resistance and mechanical properties of TIG and A-TIG welded joints of lean duplex stainless steel S82441/1.4662. Arch Metall Mater 2016, 61(2), 771–784. https://doi.org/10.1515/amm-2016-0131
  • 6. Trydell K., Persson K., Fuertes N., Siewert E., Hussary N.,Pfreuntner., BengtssonP., JaniakP., VishnuR., Frodigh M. Ferrite fraction in duplex stainless steel welded with a novel plasma arc torch. Weld World 2023, 67, 805−817.
  • 7. Francis R., Byrne G. The erosion corrosion limits of duplex stainless steels. Mater Performance 2018, 57(5), 44–47.
  • 8. Francis R. The corrosion of duplex stainless steels: a practical guide for engineers. NACE International, Houston, TX, USA, 2018.
  • 9. Łabanowski J., Świerczyńska A., Topolska S., Effect of microstructure on mechanical properties and corrosion resistance of 2205 duplex stainless steel. Pol. Marit. Res. 2014, 21(4), 108–112.
  • 10. Hosseini V.A., Wessman S., Hurtig K., Karlsson L. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel. Mater Design 2016, 98, 88–97. https://doi.org/10.1016/j.matdes.2016.03.011
  • 11. Lai R., Cai Y., Wu Y., Li F., Hua X. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding. J Mater Process Tech 2016, 231, 397–405. https://doi.org/10.1016/j.jmatprotec.2016.01.016
  • 12. Messer B., Oprea A., Wright A. Duplex stainless-steel welding: best practices. Stainl. Steel World 2007, 11, 53–63.
  • 13. Karlsson L. Welding duplex and super duplex stainless steels. Anti-corros Meth Mater 1995, 42(6), 30–35. https://doi.org/10.1108/eb007380
  • 14. Hosseini V.A., Hurtig K., Eyzop D., Östberg A., Janiak P., Karlsson L. Ferrite content measurement in super duplex stainless steel welds. Weld World 2018, 63(2), 551–563. https://doi.org/10.1007/s40194-018-00681-1
  • 15. Dobra´nszky J., Ginsztler J. Microstructural stability of duplex stainless steel weldments. Mater. Sci. Forum 2007, 561–565, 2119–2122. https://doi.org/10.4028/www.scientific.net/MSF.561-565.2119
  • 16. Karlsson L., Tolling J. Experiences and new possibilities in welding duplex stainless steels. In: IIW Regional Congress Welding and Related Inspection Technology for the Development of Southern Africa, Stellenbosch, South Africa, 8–10 March 2006.
  • 17. Wang H.-S. Effect of welding variables on cooling rate and pitting corrosion resistance in super duplex stainless weldments. Mater Trans 2005, 46(3), 593–601. https://doi.org/10.2320/matertrans.46.593
  • 18. Paulraj P., Garg R. Effect of intermetallic phases on corrosion behavior and mechanical properties of duplex stainless steel and super-duplex stainless steel. Adv. Sci. Technol. Res. J. 2015, 9(27), 87–105. https://doi.org/10.12913/22998624/59090
  • 19. Aiguo L. Progress in weldability research of duplex stainless steels. China Weld. 2024, 33(2), 50–62. https://doi.org/10.12073/j.cw.20230806001
  • 20. Ramesh A., Kumar V., Anuj, Khanna P. Weldability of duplex stainless steels – A review. E3S Web of Conferences 2021, 309, 01076. https://doi.org/10.1051/e3sconf/202130901076
  • 21. Zhang Y., Liu Z., Jin M., Song S. Effects of nitrogen element on microstructure and pitting corrosion resistance of duplex stainless steel welded joints. Mater. Res. Express 2021, 8, 026514.1−026514.9.
  • 22. Cui S., Yu Y., Tian F., Pang S. Morphology, microstructure, and mechanical properties of S32101 duplex stainless-steel joints in K-TIG welding. Materials, 2022, 15, 5432.1−5432.14.
  • 23. Han L., Han T., Chen G., Bangyu W., Sun J., Wang Y. Influence of heat input on microstructure, hardness and pitting corrosion of weld metal in duplex stainless steel welded by keyhole-TIG. Mater Charact 2021, 175, 111052.1−111052.15.
  • 24. Touileb K., Hedhibi A.C., Djoudjou R., Ouis A., Bensalama A., Ibrahim A., Abdo H.S., Ahmed M.M.Z. Mechanical, microstructure, and corrosion characterization of dissimilar austenitic 316L and duplex 2205 stainless-steel ATIG welded joints. Materials 2022, 15(7), 2470.1−2470.21.
  • 25. Moonngam S., Wangjina P., Viyanit E., Banjongprasert C. Characterizing oxide inclusions in welded lean duplex stainless steels and their influence on impact toughness. Materials 2023, 16:1921.1−1921.10.
  • 26. Krawczyk R., Słania J., Golański G., Pfeifer T.Mechanical properties and microstructure of austenite−ferrite duplex stainless steel hybrid (laser + GMAW) and SAW welded joint. Materials 2023, 16, 2909.1−2909.10.
  • 27. Cui S., Pang S., Pang D., Tian F., Yu Y. The microstructure and pitting corrosion behavior of K-TIG welded joints of the UNS S32101 duplex stainless steel. Metals 2022, 16(1), 250.1−250.10.
  • 28. Ai J., Hu Y., Wang H., et al. Research progress on corrosion of duplex stainless steel and its welded joint. Surface Technology 2022, 51(4), 77 − 91.
  • 29. Ferreira P.M., Pereira E.C., Pinheiro F.W., Monteiro S.N., Azevedo A.R.G. Effect of solution heat treatment by induction on UNS S31803 duplex stainless steel joints welded with the autogenous TIG process. Metals 2022, 12, 1450.1−1450.13.
  • 30. Zou Y., Zeng Q., Li L., Yunrui M. Effect of solution treatment on duplex stainless steel weld microstructure of deep-penetration TIG welding. Journal of Physics: Conference Series 2022, 2321, 012013.1−012013.5.
  • 31. Senczyk D. Microstructural X-ray laboratory. Wydawnictwo Uczelniane Politechniki Poznańskiej, 1974. (in Polish).
  • 32. Cullity B.D., Kołakowski B., Lefeld-Sosnowska M., et al. Fundamentals of X-ray diffraction. Warszawa, Państwowe Wydawnictwo Naukowe, 1964. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07da36d5-a8c7-4cbf-a0f4-398094220abe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.