PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka mocy poszczególnych wiązań wodorowych w parach zasad DNA

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Characterizing strength of individual hydrogen bonds in DNA base-pairs
Języki publikacji
PL
Abstrakty
EN
The main idea of the current review is to present methods useful to characterize the strength of individual hydrogen bonds in nucleic acids base-pairs. In the paper, the Authors discuss the energy definition of intermolecular interactions taking into account the presence of one intermolecular hydrogen bond (HB) as well as the situation when several intermolecular interactions (namely intermolecular hydrogen bonds) are present. In the Section 2 of the review a general overview of methods developed to estimate the strength of the individual intermolecular hydrogen bond in DNA/RNA base-pairs is presented. Thus, the reader can find detailed information on the methods used so far: the rotational method (2003), compliance constants method (2004), the EML equation application (2006), the atom replacement method (2007), the estimation of hydrogen bond energy on the basis of electron density (calculated by using the AIM theory) at BCP values (2009), the application of NBO method (2010), the comparison of HB strength based on the last two approaches (2015) and the application of coordinates interaction approach (2017). It should be emphasized, that these methods allow to estimate the strength of intermolecular interactions both in the model base-pairs and in other systems with several intermolecular hydrogen bonds. The discussion of the presented methods is supported by Tables 1-10, containing numerical values characteristics of the strength of the particular HB, and Figures 1–2. The section 3 contains a critical comparison of results based on the presented methods. Concluding remarks are given in the last Section.
Rocznik
Strony
53--74
Opis fizyczny
Bibliogr. 50 poz., schem., tab.
Twórcy
  • Wydział Chemiczny Politechniki Warszawskiej, ul. Noakowskiego 3, 00-664 Warszawa
  • Narodowy Instytut Leków, ul. Chełmska 30/34, 00-725 Warszawa
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] T.M. Krygowski, H. Szatyłowicz, Wiad. Chem., 2011, 65, 955.
  • [2] G.C. Pimentel, A.L. McClellan, The Hydrogen Bond, WH Freeman and Co., San Francisco 1960.
  • [3] The Hydrogen Bond, Recent Developments in Theory and Experiments, P. Schuster, G. Zundel, C. Sandorfy (Red.), North-Holland Publishing Company, Amsterdam 1976.
  • [4] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York 1997.
  • [5] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin 1991.
  • [6] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bonding in Structural Chemistry and Biology, Oxford University Press, Oxford 1999.
  • [7] T.W. Martin, Z.S. Derewenda, Nature Structural Biology, 1999, 6, 403.
  • [8] D. Ekonomiuk, M. Kiełbasiński, A. Koliński, Acta Biochim. Polonica, 2005, 52, 741.
  • [9] M. Terazima, Phys. Chem. Chem. Phys., 2006, 8, 545.
  • [10] B. Furtig, J. Buck, V. Manoharan, W. Bermal, A. Jaschke, P. Wenter, S. Pitsch, H. Schwalbe, Biopolymers, 2007, 86, 360.
  • [11] K. Biradha, Cryst. Eng. Comm., 2003, 5, 374.
  • [12] M. Nishio, Cryst. Eng. Comm., 2004, 6, 130.
  • [13] S. Kitagawa, K. Uemura, Chem. Soc. Rev., 2005, 34, 109.
  • [14] J. De Girolamo, P. Reiss, A. Pron, J. Phys. Chem. C, 2007, 111, 14681.
  • [15] R. Otero, M. Schock, L.M. Molina, E. Legsgaard, I. Stensgaard, B. Hammer, F. Besenbacher, Angew. Chem., Int. Ed., 2005, 44, 2270.
  • [16] T. Steiner, Angew. Chem. Int. Ed., 2002, 41, 48.
  • [17] J.T. Davis, Angew. Chem. Int. Ed., 2004, 43, 668.
  • [18] B.N. Solomonov, V.B. Novikov, J. Phys. Org. Chem., 2008, 21, 2.
  • [19] R. Ishikawa, C. Kojima, A. Ono, M. Kainosho, Magn. Res. Chem., 2001, 39, S159.
  • [20] M.S. de Vries, P. Hobza, Annu. Rev. Phys. Chem., 2007, 58, 585.
  • [21] O. Lukin, J. Leszczynski, J. Phys. Chem. A, 2002, 106, 6775.
  • [22] I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A, 2004, 108, 3335.
  • [23] The Benchmark Energy & Geometry Database: http://www.begdb.com/
  • [24] J. Řezač, P. Jurečka, K.E. Riley, J Černy, H. Valdes, K. Pluhačkova, K. Berka, T. Řezač, M. Pitoňak, J. Vondrašek, P. Hobza, Collect. Czech. Chem. Commun., 2008, 73, 1261.
  • [25] S.F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.
  • [26] C. Fonseca Guerra, T. van der Wijst, F.M. Bickelhaupt, Chem. Eur. J., 2006, 12, 3032.
  • [27] L. Piela, Idee Chemii Kwantowej, PWN S.A., Warszawa 2003.
  • [28] A. Asensio, N. Kobko, J.J. Dannenberg, J. Phys. Chem. A, 2003, 107, 6441.
  • [29] J. Grunenberg, J. Am. Chem. Soc., 2004, 126, 16310.
  • [30] E. Espinosa, E.Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.
  • [31] R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, UK 1990.
  • [32] P.L.A. Popelier, Atoms in Molecules – An Introduction, Pearson Education, Harlow 2000.
  • [33] C.F. Matta, N. Castillo, R.J. Boyd, J. Phys. Chem. B, 2006, 110, 563.
  • [34] H. Dong, W. Hua, S. Li, J. Phys. Chem. A, 2007, 111, 2941.
  • [35] A. Ebrahimi, S.M. Habibi Khorassani, H. Delarami, Chem. Phys., 2009, 365, 18.
  • [36] F. Weinhold, C.R. Landis, Valency and Bonding. A Natural Bond Orbital Donor–Acceptor Perspective, Cambridge University Press: Cambridge, 2005.
  • [37] NBO 5.G, E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004); http://www.chem.wisc.edu/~nbo5
  • [38] H. Szatylowicz, N. Sadlej-Sosnowska, J. Chem. Inf. Model., 2010, 50, 2151.
  • [39] J. Leszczyński, J. Phys. Chem. A, 1998, 102, 2357.
  • [40] H. Szatylowicz, A. Jezierska, N. Sadlej-Sosnowska, Struct. Chem., 2015, 27, 367.
  • [41] S.K. Pandey, D. Manogaran, S. Manogaran, H.F. Schaefer III, J. Phys. Chem. A, 2017, 121, 6090.
  • [42] I. Baker, P. Pulay, J. Am. Chem. Soc., 2006, 128, 11324.
  • [43] J. Baker, P. Pulay, J. Chem. Phys., 2006, 125, 014103.
  • [44] J. Baker, WIRES Comput. Mol.Sci., 2014, 4, 111.
  • [45] S. Scheiner, Hydrogen bonding, a theoretical perspective, Oxford University Press, New York 1997.
  • [46] S. Scheiner, T. Kar, J. Phys. Chem. A, 2002, 106, 1784.
  • [47] M.T. Carroll, R.W.F. Bader, Mol. Phys., 1988, 65, 695.
  • [48] J. Gu, J. Leszczynski, M. Bansal, Chem. Phys. Lett., 1999, 311, 209.
  • [49] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 2005, 105, 3513.
  • [50] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07d95cb1-5346-412d-bf9d-38cba5117706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.