PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermogenic gases generated from coals and shales of the Upper Silesian and Lublin basins : hydrous pyrolysis approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to provide a better characterization of the origin and volume of thermogenic gas generation hydrous pyrolysis (HP) experiments were performed on coals and shales at 330 and 360oC for 72 hours. The maturity range of coals and shales used for HP varies from 0.57 to 0.92% Ro. The maturity increase caused by HP at 330 and 360oC ranges from 1.32 to 1.39% and from 1.71 to 1.83%, respectively. δ13C of CH4, 2H6, C3H6 and n-C4H10 in HP gases versus their reciprocal C-number have a concave relationship, and therefore do not follow a linear trend. δ2H of CH4, 2H6 and C3H6 in HP gases versus their reciprocal H-number show both linear and convex-concave relationships. The growth of CO2 yields during HP was higher for shales than for coals. H2S yields from shales are higher than from coals, which can be connected with catalytic and adsorbed influence of shale matrix. H2 was also generated in notable quantities from water and organic matter of coals and bigger amounts from shales. N2 yields grow with the increase of Ro after 3oC HP and it is more enriched in 15N isotope than after 330C.
Rocznik
Strony
art. no. 26
Opis fizyczny
Bibliogr. 126 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Andresen, B., Throndsen, T., Barth, T., Bolstad, J., 1994. Thermal generation of carbon dioxide and organic acids from different source rocks. Organic Geochemistry, 21: 1229-1242.
  • 2. Andresen, B., Throndsen, T., Raheim, A., Bolstad, J., 1995. A comparison of pyrolysis products with models for natural gas generation. Chemical Geology, 126: 261-280.
  • 3. Anissimov, L., 1995. Origin of H2S in natural gases: identification of geochemical processes. In: Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History (eds. J.O. Grimalt and C. Dorronsoro): 1113-1114. Selected Papers from the 17th International Meeting on Organic Geochemistry Donostia-San Sebastian.
  • 4. Amrani, A., Lewan, M.D., Aizenshtat, Z., 2005. Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochimica et Cosmochimica Acta, 69: 5317-5331.
  • 5. ASTM, 2005. American Society For Testing And Materials (ASTM). D2798-05. Standard test method for microscopical determination of the vitrinite reflectance of coal. ASTM International. West Conshohocken, PA.
  • 6. ASTM, 2011. American Society for Testing and Materials (ASTM). D7708-11. Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. ASTM International. West Conshohocken, PA.
  • 7. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalié, J., 1997. Thermal cracking of kerogen in open and closed systems - determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26: 321-339.
  • 8. Berner, U., Faber, W., 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24: 947-955.
  • 9. Bilkiewicz, E., Kowalski, T., 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite (Ca2) strata in SW part of the Polish Permian Basin: stable isotope and hyrdous pyrolysis studies. Journal of Petroleum Science and Engineering, 192: 107296.
  • 10. Buła, Z., Kotas, A. (eds.), 1994. Geological Atlas of the Upper Silesian Coal Basin, part III: Structural geological maps 1:100 000 (in Polish with English summary). Państwowy Instytut Geologiczny, Warszawa.
  • 11. Buła, Z., Żaba, J., 2005. Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża (in Polish). Przew. 76 Zjazdu Pol. Tow. Geol. Rudy k/Rybnika, Warszawa: 14-42.
  • 12. Chou, C.-L., 1990. Geochemistry of sulfur in coal. American Chemical Society Symposium Series, 429: 30-52.
  • 13. Chung, H.M., Gormly, J.R., Squires, R.M., 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chemical Geology, 71: 91-103.
  • 14. Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.-X., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204.
  • 15. Cooles, G.P., Mackenzie, A.S., Parkes, R.J., 1987. Non-hydrocarbons of significance in petroleum exploration: volatile fatty acids and non-hydrocarbon gases. Mineral Magazine, 51: 483-493.
  • 16. Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25: 2538-2560.
  • 17. Ćmiel, S.R., 2012. Relation between coal transformation and geometric features of faults in the Upper Silesian Coal Basin. Acta Geophysica, 60: 438-448.
  • 18. Duliński, M., Różański, K., Pierchała, A., Gorczyca, Z., Marzec, M., 2019. Isotopic composition of precipitation in Poland: a 44-year record. Acta Geophysica, 67: 1637-1648.
  • 19. Durand, B., Monin, J.C., 1980. Elemental analysis of kerogen (C, H, O, N, S, Fe). In: Kerogen-Insoluble Organic Matter from Sedimentary Rocks (ed. B. Durand): 113-142. Editions Technip, Paris.
  • 20. Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Evalet ses applications. Revue de l'Institut Francais du Petrole, 40: 563-579 and 755-784.
  • 21. Fabiańska, M.J., Ćmiel, S.R., Misz-Kennan, M., 2013. Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: example from 405 coal seam of the Zaleskie Beds (Poland). International Journal of Coal Geology, 107: 96-111.
  • 22. Gabzdyl, W., Probierz, K., 1987. The occurrence of anthracites in an area characterized by lower rank coals in the Upper Silesian Coal Basin of Poland. International Journal of Coal Geology, 7: 209- 225.
  • 23. Galimov, E.M., 1985. The Biological Fractionation of Isotopes. Academic Press, London.
  • 24. Gao, J., Ni, Y., Li, W., Yuan Y., 2020. Pyrolysis of coal measure source rocks at highly to over mature stage and its geological implications. Petroleum Exploration and Development, 47: 773-780.
  • 25. Geissler, C., Belau, L., 1971. Zum Verhalten der stabilen Kohlenstoffisotope bei der Inkohlung. Zeitschrift für angewandte Geologie, 17: 13-17.
  • 26. Gerling, P., Idiz, E., Everlien, G., Sohns, E., 1997. New aspects on the origin of nitrogen in natural gas in Northern Germany. Geologisches Jahrbuch, D103: 65-84.
  • 27. Grotek, I., 2007. Petrografia i dojrzałość termiczna materii organicznej rozproszonej w osadach paleozoiku (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 118: 134-147.
  • 28. Grotek, I., Matyja, H., Skompski, S., 1998. Thermal maturity of organic matter in the Carboniferous deposits of the Radom-Lublin and Pomerania areas (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 245-254.
  • 29. Higgs, M.D., 1986. Laboratory studies into the generation of natural gas from coals. Geological Society Special Publications, 23: 113-120.
  • 30. Hill, R.J., Jenden, P.D., Tang, Y.C., Teerman, S.C., Kaplan, I.R., 1994. Influence of pressure on pyrolysis of coal. ACS Symposium Series, 570: 161-193.
  • 31. Hoering, T.C., 1984. Thermal reaction of kerogen with added water, heavy water, and pure organic substances. Organic Geochemistry, 5: 267-278.
  • 32. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York.
  • 33. ISO, 2010a. Hard coal and coke - determination of volatile matter. International Standard ISO 562:2010(E). Third edition, Geneva.
  • 34. ISO, 2010b. Solid mineral fuels - coke - determination of moisture in the general analysis test sample. International Standard ISO 687:2010(E). Third edition, Geneva.
  • 35. ISO, 2010c. Solid mineral fuels - determination of ash. International Standard ISO 1171:2010(E). Fourth edition, Geneva.
  • 36. Janas, M., 2018. Badania geochemiczne materii organicznej metodą Rock-Eval (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 152: 211-220.
  • 37. Jenden, P.D., Kaplan, I.R., Poreda, R.J., Craig, H., 1988. Origin of nitrogen-rich natural gases in the Californian Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52: 851-861.
  • 38. Jurczak-Drabek, A., 1996. Petrographic Atlas of the Upper Silesian Coal Basin, 1:300 000 (in Polish with English summary). Państwowy Instytut Geologiczny, Warszawa.
  • 39. Jurczak-Drabek, A., 2015. Petrografia i jakość węgla (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 144: 121-141.
  • 40. Jureczka, J., 2018. Wyniki badań litologicznych, stratygraficznych, petrograficznych, mineralogicznych, geochemicznych i chemiczno-technologicznych (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 152: 134-210.
  • 41. Jureczka, J., Dopita, M., Gałka, M., Krieger, W., Kwarciński, J., Martinec, P., 2005. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin (in Polish with English summary). Państwowy Instytut Geologiczny, Warszawa.
  • 42. Jüntgen, H., Karweil J., 1966. Gasbildung und Gasspeicherung in Steinkohleflözen. II. Gasspeicherung. Erdöl und Kohle, Erdgas, Petrochemie, 19: 339-344.
  • 43. Jüntgen, H., Klein, J., 1975. Entstehung von Erdgas aus kohligen Sedimenten. Erdöl und Kohle, 28: 65-73.
  • 44. Karweil, J., 1966. Inkohlung, Pyrolyse und primäre Migration des Erdöls. Brennstoff-Chemie, 47: 161-169.
  • 45. Karweil, J., 1969. Aktuell Probleme der Geochemie der Kohle. In: Advances in Organic Geochemistry 1968 (eds. P.A. Schenk and I. Havernaar): 59-84. Pergamon Press, Oxford.
  • 46. Kędzior, A., Gradziński, R., Doktor, M., Gmur, D. 2007. Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession: an example from the Upper Silesia Coal Basin, Poland. Geological Magazine, 144: 487-496.
  • 47. Kotarba, M., 1988. Geochemical criteria for the origin of natural gases accumulated in the Upper Carboniferous coal-seam-bearing formation in Wałbrzych Coal Basin (in Polish with English summary). Stanisław Staszic University of Mining and Metallurgy Scientific Bulletin, 1199, Geology AGH, 42: 1-119.
  • 48. Kotarba, M., 1990a. Origin of gases accumulated in Upper Carboniferous coal-bearing strata of Lower Silesian Coal Basin and southern part of Rybnik Coal district (in Polish with English summary). In: Górotwór jako ośrodek wielofazowy. Wyrzuty skalno-gazowe (ed. J. Litwiniszyn): 37-49. Instytut Mechaniki Górotworu, Polska Akademia Nauk, Kraków.
  • 49. Kotarba, M., 1990b. Origin of natural gases accumulated in the Upper Carboniferous formation in central field of “Thorez” coal mine: stable isotope studies (in Polish with English summary). In: Górotwór jako ośrodek wielofazowy. Wyrzuty skalno-gazowe. Instytut Mechaniki Górotworu (ed. J. Litwiniszyn): 51-65. Polska Akademia Nauk, Kraków.
  • 50. Kotarba, M., 1990c. Isotopic geochemistry and habitat of the natural gases from Upper Carboniferous Žacleř coal-bearing formation in Nowa Ruda coal district (Lower Silesia, Poland). Organic Geochemistry, 16: 549-560.
  • 51. Kotarba, M.J., 2001. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins, Poland. Organic Geochemistry, 32: 163-180.
  • 52. Kotarba, M.J., Clayton, J.L., 2003. A stable isotope and biological marker study of Polish bituminous coals and carbonaceous shales. International Journal of Coal Geology, 55: 73-94.
  • 53. Kotarba, M.J., Lewan, M.D., 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis. Organic Geochemistry, 35: 615-646.
  • 54. Kotarba, M.J., Lewan, M.D., 2013. Sources of natural gases in Middle Cambrian reservoirs in Polish and Lithuanian Baltic Basin as determined by stable isotopes and hydrous pyrolysis of Lower Palaeozoic source rocks. Chemical Geology, 345: 62-76.
  • 55. Kotarba, M.J., Pluta, I., 2009. Origin of natural waters and gases within the Upper Carboniferous coal-bearing and autochthonous Miocene strata in south-western part of the Upper Silesian Coal Basin, Poland. Applied Geochemistry, 24: 876-889.
  • 56. Kotarba, M.J., Rice, D.D., 2001. Composition and origin of coalbed gases in the Lower Silesian basin, northwestern Poland. Applied Geochemistry, 16: 895-910.
  • 57. Kotarba, M., Kosakowski, P., Botor, D., 1995a. Modelowanie metodą GENEX i bilans generowania węglowodorów w kompleksie skał iłowcowo-mułowcowych utworów produktywnych górnego karbonu Górnośląskiego Zagłębia Węglowego (in Polish). In: Opracowanie modeli oraz bilansu generowania i akumulacji gazów w serii węglonośnej Górnośląskiego Zagłębia Węglowego (eds. R. Ney and M. Kotarba): 115-130. Wydawnictwo Centrum PPGSMiE PAN, Kraków.
  • 58. Kotarba, M., Ney, R., Hołda, S., 1995b. Bilans akumulacji metanu w pokładach węgla kamiennego i w kompleksie skał iłowcowo-mułowcowych górnego karbonu produktywnego Górnośląskiego Zagłębia Węglowego (in Polish). In: Opracowanie modeli oraz bilansu generowania i akumulacji gazów w serii węglonośnej Górnośląskiego Zagłębia Węglowego (eds. R. Ney and M. Kotarba): 175-179. Wydawnictwo Centrum PPGSMiE PAN, Kraków.
  • 59. Kotarba, M.J., Clayton, J.L., Rice, D.D., Wagner, M., 2002. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chemical Geology, 184: 11-35.
  • 60. Kotarba, M.J., Curtis, J.B., Lewan, M.D., 2009. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis from Menilite Shales of the Polish Outer Carpathians. Organic Geochemistry, 40: 769-783.
  • 61. Kotarba, M.J., Nagao, K., Karnkowski P.H., 2014. Origin of gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen in Carboniferous and Permian strata of the distal part of the Polish Basin: Geological and isotopic approach. Chemical Geology, 383: 164-179.
  • 62. Kotarba, M.J., Sumino, H., Nagao, K., 2019a. Origin of hydrocarbon and noble gases, carbon dioxide and molecular nitrogen in Devonian, Pennsylvanian and Miocene strata of the Polish Lublin and Ukrainian Lviv basins, southern part of the Upper Silesian Coal Basin and western part of the Carpathian Foredeep (Poland). Applied Geochemistry, 108: 104371.
  • 63. Kotarba, M.J., Więcław, D., Bilkiewicz, E., Radkovets, N.Y., Koltun, Y.V., Kmiecik, N., Romanowski, T., Kowalski, A., 2019b. Origin and migration of oil and natural gas in the western part of the Ukrainian Outer Carpathians: geochemical and geological approach. Marine and Petroleum Geology, 103: 596-619.
  • 64. Kotarba, M.J., Więcław, D., Bilkiewicz, E., Lillis, P.G., Dziadzio, P., Kmiecik, N., Romanowski, T., Kowalski, A., 2020a. Origin, migration and secondary processes of oil and natural gas in the central part of the Polish Outer Carpathians. Marine and Petroleum Geology, 121: 104617.
  • 65. Kotarba, M.J., Bilkiewicz, E., Więcław, D., Radkovets, N.Y., Koltun, Y.V., Kowalski, A., Kmiecik, N., Romanowski, T., 2020b. Origin and migration of oil and natural gas in the central part of the Ukrainian outer Carpathians: geochemical and geological approach. AAPG Bulletin, 104: 1323-1356.
  • 66. Kotarba, M.J., Bilkiewicz, E., Kosakowski, P., 2020c. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite carbonate reservoir of the western part of the Polish sector of the Southern Permian Basin. Chemical Geology, 554: 119807.
  • 67. Kotas, A., 1982. Zarys budowy geologicznej Górnośląskiego Zagłębia Węglowego (in Polish). Przewodnik 54 Zjazdu Pol. Tow. Geol. Sosnowiec: 45-72. Wyd. Geol., Warszawa.
  • 68. Kotas, A., (ed.), 1994. Coalbed methane potential of the Upper Silesian Coal Basin (Poland). Prace Państwowego Instytutu Geologicznego, 142: 1-81.
  • 69. Kotas, A., 1995. Upper Silesian Coal Basin - lithostratigraphy and sedimentologic-palegeographic development. Prace Państwowego Instytutu Geologicznego, 148: 124-134.
  • 70. Kotas, A., Porzycki, J., 1984. Geological position and main features of Carboniferous coal basins in Poland (in Polish with English summary). Przegląd Geologiczny, 32: 268-280.
  • 71. Kotas, A., Buła, Z., Gądek, S., Kwarciński, J., Malicki, R., 1983. Atlas geologiczny Górnośląskiego Zagłębia Węglowego, 1:100 000 (in Polish). Instytut Geologiczny, Warszawa.
  • 72. Kowalski, A., Kotarba, M., Semyrka, G., 1995. Model i bilans generowania gazów z pokładów węgla utworów górnego karbonu Górnośląskiego Zagłębia Węglowego (in Polish). In: Opracowanie modeli oraz bilansu generowania i akumulacji gazów w serii węglonośnej Górnośląskiego Zagłębia Węglowego (eds. R. Ney and M. Kotarba): 99-114. Wydawnictwo Centrum PPGSMÍE PAN, Kraków.
  • 73. Kozłowska, A., Waksmundzka, M.I., 2020. Diagenesis, sequence stratigraphy and reservoir quality of the Carboniferous deposits of the south eastern Lublin Basin (SE Poland). Geological Quarterly, 64 (2): 422-459.
  • 74. Kozłowska, A., Nurkiewicz, B., Różkowska, J., Cudak, J., 2015. Wyniki badań petrograficznych, mineralogicznych, geochemicznych i chemiczno-technologicznych (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 144: 106-177.
  • 75. Krooss, B.M., Littke, R., Müller, B., Frielingsdorf, J., Schwochau, K., Idiz, E.F., 1995. Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chemical Geology, 126: 291-318.
  • 76. Krooss, B.M., Friberg, L., Gensterblum, Y., Hollenstein, J., Prinz, D., Littke, R., 2005. Investigation of the pyrolytic liberation of molecular nitrogen from Paleozoic sedimentary rocks. International Journal of Earth Sciences, 94: 1023-1038.
  • 77. Krooss, B.M., Plessen, B., Machel, H.G., Lüders, V., Littke, R., 2008. Origin and distribution of non-hydrocarbon gases. In: Dynamics of Complex Intracontinental Basins (eds. R. Littke, U. Bayer, D. Gajewski and S. Nelskamp): 433-458. Springer, Berlin-Heidelberg.
  • 78. Kruszewska, K., 1983. Microfacies types of coal seams in Upper Silesian Coal Basin. Kwartalnik Geologiczny, 27 (1): 41-58.
  • 79. Krzywiec, P., Mazur, S., Gągała, Ł., 2017. Late Carboniferous thin-skinned compressional deformation above the SW edge of the East European craton as revealed by seismic reflection and potential field data - correlations with the Variscides and the Appalachians. GSA Memoir, 213: 353-372.
  • 80. Kufrasa, M., Stypa, A., Krzywiec, P., Słonka, Ł., 2019. Late Carboniferous thin-skinned deformation in the Lublin Basin, SE Poland: results of combined seismic data interpretation, structural restoration and subsidence analysis. Annales Societatis Geologorum Poloniae, 89: 175-194.
  • 81. Landais, P., 1991. Assessment of coal potential evolution by experimental simulation of natural coalification. Organic Geochemistry, 17: 705-710.
  • 82. Lewan, M.D., 1985. Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philosophical Transactions of the Royal Society, London, Ser. A., 315: 123-134.
  • 83. Lewan, M.D., 1993. Laboratory simulation of petroleum formation: Hydrous pyrolysis, In: Organic Geochemistry (eds. M. Engel and S. Macko). Plenum Publications Corp. New York: 419-442.
  • 84. Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61: 3691-3723.
  • 85. Lewan, M.D., 2002. New insights on timing of oil and gas generation in the central Gulf Coast interior zone based on hydrous-pyrolysis kinetic parameters. Gulf Coast Association of Geological Societies, 52: 607-620.
  • 86. Lewan, M.D., Kotarba, M.J., 2014. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis. AAPG Bulletin, 98: 2581-2610.
  • 87. Littke, R., Krooss, B.M., Idiz, E.F., Frielingsdorf, J., 1995. Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. AAPG Bulletin, 79: 410-430.
  • 88. Lu, S.T., Kaplan, I.R. 1990. Hydrocarbon-generating potential of humic coals from dry pyrolysis. AAPG Bulletin, 74: 163-173.
  • 89. Lüders, V., Reutel, Ch., Hoth, P., Banks, D.A., Mingram, B., Pettke, T., 2005. Fluid and gas migration in the North German Basin: fluid inclusion and stable isotope constrains. International Journal of Earth Sciences, 94: 990-1009.
  • 90. Lüders, V., Plessen, B., di Primio, R., 2012. Stable carbon isotopic ratios of CH4-CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin (Germany) - a tool for tracing gas sources and maturity. Marine and Petroleum Geology, 30: 174-183.
  • 91. Milkov, A.V., Etiope, G., 2018. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Organic Geochemistry, 125: 109-120.
  • 92. Mingram, B., Hoth, P., Lüders, V., Harlov, D., 2005. The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Sciences, 94: 1010-1022.
  • 93. Misiak, J., 2017. Petrographic composition and forms of bituminous coal lithotypes in the Upper Carboniferous Formations of the Upper Silesian Coal Basin (in Polish with English summary). Gospodarka Surowcami Mineralnymi, 33: 109-120.
  • 94. Narkiewicz, M., 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51 (3): 231-256.
  • 95. Narkiewicz, M., 2020. The Variscan foreland in Poland revisited: new data and new concepts. Geological Quarterly, 64 (2): 377-401.
  • 96. Ni, Y., Liao, F., Gao, J., Chen, J., Yao, L., Zhang, D., 2019a. Hydrogen isotopes of hydrocarbon gases from different organic facies of the Zhongba gas field, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 179: 776-786.
  • 97. Ni, Y., Liao, F., Yao, L., Gao, J., Zhang, D., 2019b. Hydrogen isotope of natural gas from the Xujiahe Formation and its implications for water salinization in central Sichuan Basin, China. Journal of Natural Gas Geoscience, 4: 215-230.
  • 98. Orr, W.L., 1977. Geologic and geochemical controls on the distribution of hydrogen sulphide in natural gas. In: Advances in Organic Geochemistry 1975 (eds. R. Campos and J. Goni): 571-597. Enadimsa, Madrid.
  • 99. Oszczypko, N., Krzywiec, P., Popadyuk, I., Peryt, T., 2006. Carpathian Foredeep Basin (Poland and Ukraine): its sedimentary, structural, and geodynamic evolution. AAPG Memoir, 84: 293-350.
  • 100. Peryt, T.M., Buła, Z., Hałas, S., Olszewska, B., Pluta, I., Słodkowska, B., 2005. Non-marine evaporites in the Lower Miocene of Upper Silesia (Carpathian Foreland Basin, Poland). Geologica Carpathica, 56: 327-336.
  • 101. Porzycki, J., 1988a. Lithologic and sedimentologic characteristics of Carboniferous deposits (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 122: 40-76, 229-231.
  • 102. Porzycki, J., 1988b. Tectonics (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 122: 154-160, 237-238.
  • 103. Porzycki, J., Zdanowski, A., 1995a. Southeastern Poland (Lublin Carboniferous Basin). Prace Państwowego Instytutu Geologicznego, 148: 102-109.
  • 104. Porzycki, J., Zdanowski, A., 1995b. Coal deposits. Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 148: 159-164.
  • 105. Ptak, B., Różkowska, A., 1995. Geochemical Atlas of Coal Deposits of Upper Silesian Coal Basin (in Polish with English summary). Państwowy Instytut Geologiczny, Warszawa.
  • 106. Qin, K., Yang, Q., Gua, S., Lu, Q., Shu, W., 1994. Chemical structure and hydrocarbon formation of the Huanxian brown coal, China. Organic Geochemistry, 21: 333-341.
  • 107. Schimmelmann, A., Lewan, M.D., Winsch, R.P., 1999. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta, 63: 3751-3766.
  • 108. Schimmelmann, A., Boudou, J.P., Lewan, M.D., Wintsch, R.P., 2001. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Organic Geochemistry, 32: 1009-1018.
  • 109. Sechman, H., Kotarba, M.J., Fiszer, J., Dzieniewicz, M., 2013. Distribution of methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization at the abandoned “Nowa Ruda” coal mine (Lower Silesian Coal Basin, SW Poland). International Journal of Coal Geology, 116-117: 1-16.
  • 110. Sechman, H., Kotarba, M.J., Dzieniewicz, M., Romanowski, T., Fiszer, J., 2017. Evidence of methane and carbon dioxide migration to the near surface zone in the area of the abandoned coal mines in Wałbrzych District (Lower Silesian Coal Basin, SW Poland) based on periodical changes of molecular and isotopic compositions. International Journal of Coal Geology, 183: 138-160.
  • 111. Shuai, Y., Zhang, S., Peng, P., Zou, Y., Yuan, X., Liu, J., 2013. Occurrence of heavy carbon dioxide of organic origin: Evidence from confined dry pyrolysis of coal. Chemical Geology 358: 54-60.
  • 112. Smith, J.W., Gould, K.W., Rigby, D., 1982. The stable isotope geochemistry of Australian coals. Organic Geochemistry, 3: 111-131.
  • 113. Smith, J.W., Gould, K.W., Rigby, D., Hart, G., Hargraves, A.J., 1985. An isotopic study of hydrocarbon generation processes. Organic Geochemistry, 8: 341-347.
  • 114. Suleimenov, O.M., Krupp, R.E., 1994. Solubility of hydrogen sulfide in pure water and in NaCl solution, from 20 to 320oC and at saturation pressures. Geochimica et Cosmochimica Acta, 58: 2433-2444.
  • 115. Teerman, S.C., Hwang, R.J., 1991. Evaluation of the liquid hydrocarbon potential of coal by artificial maturation techniques. Organic Geochemistry, 6: 749-764.
  • 116. Tomaszczyk, M., Jarosiński, M., 2017. The Kock Fault Zone as an indicator of tectonic stress regime changes at the margin of the East European Craton (Poland). Geological Quarterly, 61 (4): 908-925.
  • 117. Waksmundzka, M.I., 1998. Depositional architecture of the Cariboniferous Lublin Basin (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 89-100.
  • 118. Waksmundzka, M.I., 2010. Sequence stratigraphy of Carboniferous paralic deposits in the Lublin Basin (SE Po land). Acta Geologica Polonica, 60: 557-597.
  • 119. Waksmundzka, M.I., 2013. Carboniferous coarsening-upward and non-gradational cyclotherms in the Lublin Basin (SE Poland): palaeoclimatic implications. Geological Society Special Publications, 376: 141-175.
  • 120. Whiticar, M.J., 1994. Correlation of natural gases with their sources. AAPG Memoir, 60: 261-283.
  • 121. Więcław, D., Bilkiewicz, E., Kotarba, M.J., Lillis, P.G., Dziadzio, P.S., Kowalski, A., Kmiecik, N., Romanowski, T., Jurek, K., 2020. Origin and secondary processes in petroleum in the eastern part of the Polish Outer Carpathians. International Journal of Earth Sciences, 109: 63-99.
  • 122. Zdanowski, A., (ed.), 1999. Geological Atlas of the Lublin Coal Basin (in Polish with English summary). Państwowy Instytut Geologiczny, Warszawa.
  • 123. Zdanowski, A., 2007. The Carboniferous of the Appalachian and its comparison to the Carboniferous of the Upper Silesian and Lublin Coal basins (in Polish with English summary). Geology AGH, 33: 317-327.
  • 124. Zhu, Y., Shi, B., Fang, C., 2000. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chemical Geology, 164: 321-330.
  • 125. Zielińska, M., Fabiańska, M., Więcław, D., Misz-Kennan, M., 2020. Comparative petrography and organic geochemistry of different types of organic matter occurring in the Outer Carpathians rocks. Geological Quaternary, 64 (1): 165-184.
  • 126. Żaba, J., 1999. The structural evolution of Lower Palaeozoic succession in the Upper Silesia Block and Małopolska Block border zone (southern Poland) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 166: 1-162.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07d851d8-ea1b-4418-ae22-6012696b2daa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.