Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Personalized prostheses, in addition to restoring and recreating normal body function and appearance, also fully achieve true reconstruction. However, traditional approaches to prosthesis manufacturing can incur significant resource costs. Challenges in the field of prosthetics include the development of improved, user-friendly manufacturing workflows. It is therefore necessary to improve the method, for example, by using digital technologies. A difficult assignment is also the selection of appropriate biocompatible materials. This case report detailed a method of producing patient-specific epithesis using photogrammetry, CAD based sculpting, additive manufacturing (AM), and mold casting. The workflow covered three main steps: data capture, prosthesis design, and prosthesis manufacturing. The patient’s face was digitized using a digital single-lens reflex (DSLR) camera, while the manufacturing included, i.e., stereolithography (SLA) and Vacuum Casting (VC). The work resulted in two prototypes of facial epithesis: one-part orbital prosthesis and twopart orbital prosthesis. Different materials were used to make the epitheses: for the one-part epitheses it was a two-part polyurethane (PU) resin, and for the two-part epitheses it was epoxy resin and medical-grade silicone. The outcomes were then evaluated based on questionnaires and prosthetic weight differences. Unfortunately, none of the produced prostheses fully resolved all the examined issues. It was concluded that further work is necessary to select a material that would ensure appropriate aesthetic effects and fitting the prosthesis to the defect. However, the use of new technologies to produce patient - specific prostheses can provide significant benefits, such as saving time, reducing the cost, and reducing the necessary number of outpatient visits.
Wydawca
Czasopismo
Rocznik
Tom
Strony
854--865
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszów, Poland
autor
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, Rzeszów, Poland; Centrum Szkolnictwa i Technologii Nowych Generacji, Rzeszów, Poland
autor
- Department of Mechanical Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Rzeszów, Poland
autor
- Centrum Szkolnictwa i Technologii Nowych Generacji, Rzeszów, Poland
autor
- Centrum Szkolnictwa i Technologii Nowych Generacji, Rzeszów, Poland
autor
- Centrum Szkolnictwa i Technologii Nowych Generacji, Rzeszów, Poland
autor
- Centrum Szkolnictwa i Technologii Nowych Generacji, Rzeszów, Poland
autor
- Department of Mechanical Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Rzeszów, Poland
Bibliografia
- [1] Nyberg E, Farris A, Hung B, Dias M, Garcia J, Dorafshar A, et al. 3d-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng 2017;45 (1):45–57. https://doi.org/10.1007/s10439-016-1668-5.
- [2] Lubkin V, Sloan S. Enucleation and psychic trauma. Adv Ophthalmic Plast Reconstr Surg 1990;8:259–62.
- [3] Pun SN, Shakya R, Adhikari G, Parajuli PK, Singh RK, Suwal P. Custom ocular prosthesis for enucleated eye: a case report. J College Med Sci-Nepal 2016;12(3):127–30. https://doi.org/ 10.3126/jcmsn.v12i3.16018.
- [4] Cai D, Zheng J, Kuang W, Li Z, Yuan S, Xiong H, et al. A threedimensional study of the nasolabial soft tissue symmetry in children with unilateral complete cleft lip and palate using traditional and split-type nasoalveolar molding. J Craniofac Surg 2020;31(6):1785–9. https://doi.org/10.1097/scs.0000000000006593.
- [5] Bertelsen C, Liu C, Kokot N. Reconstruction of parotidectomy and lateral skull base defects. Curr Opin Otolaryngol Head Neck Surg 2017;25(5):431–8. https://doi.org/10.1097/ MOO.0000000000000391.
- [6] Oliver JD, Madhoun W, Graham EM, Hendrycks R, Renouard M, Hu MS. Stem cells regenerating the craniofacial skeleton: current state-of-the-art and future directions. J Clin Med 2020;9(10):3307. https://doi.org/10.3390/jcm9103307.
- [7] Perman KI, Baylis HI. Evisceration, enucleation, and exenteration. Otolaryngol Clin North Am 1988;21(1):171–82.
- [8] Kesting MR, Koerdt S, Rommel N, Mu¨ cke T, Wolff KD, Nobis CP, et al. Classification of orbital exenteration and reconstruction. J Cranio-maxillo-facial Surg 2017;45 (4):467–73. https://doi.org/10.1016/j.jcms.2017.01.003.
- [9] Baum SH, Schmeling C, Eckstein A, Mohr C. Orbital exenteration: symptoms, indications, tumour localizations, pathologies, reconstruction, complications and survival. J Cranio-Maxillofac Surg 2020. https://doi.org/10.1016/j. Jcms.2020.05.008.
- [10] Reinheimer WT. Techniques of enucleation and evisceration. Oper Tech Otolaryngol-Head Neck Surg 2018;29(4):213–7. https://doi.org/10.1016/j.otot.2018.10.006.
- [11] Shaikh SR, Gangurde AP, Shambharkar VI. Changing ocular prostheses in growing children: a 5-year follow-up clinical report. J Prosthetic Dentistry 2014;111(4):346–8. https://doi. org/10.1016/j.prosdent.2013.09.021.
- [12] Bachelet JT, Jouan R, Prade V, Francisco C, Jaby P, Gleizal A. Place of 3D printing in facial epithesis. J Stomatol Oral Maxillofac Surg 2017;118(4):224–7. https://doi.org/10.1016/j. Jormas.2017.05.008.
- [13] Matraszek H, Stodolak E, Błazewicz S. Medical and technological aspects of facial prostheses. Eng Biomater 2007;10(69–72):118–21.
- [14] Bali N, Dhall RS, Singh N. Various steps involved in fabrication of an ocular prosthesis: a case report 2015;1 (5):93–6.
- [15] Davis BK. The role of technology in facial prosthetics. Curr Opin Otolaryngol Head Neck Surg 2010;18(4):332–40. https:// doi.org/10.1097/MOO.0b013e32833bb38c.
- [16] Sherwood R, Cooke J. The fabrication and validation of patient specific Maxillo-facial prostheses using 3D printing. Physica Medica 2019;67:205–6. https://doi.org/10.1016/j.ejmp.2019.09.214.
- [17] Sherwood RG, Murphy N, Kearns G, Barry C. The use of 3d printing technology in the creation of patient-specific facial prostheses. Irish J Med Sci 2020;189:1215–21. https://doi.org/10.1007/s11845-020-02248-w.
- [18] Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verné E, et al. Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 2014;10 (3):1064–87. https://doi.org/10.1016/j.actbio.2013.12.014.
- [19] de Caxias FP, dos Santos DM, Bannwart LC, de Moraes Melo Neto CL, Goiato MC. Classification, history, and future prospects of maxillofacial prosthesis. Int J Dentistry 2019;2019:8657619.https://doi.org/10.1155/2019/8657619.
- [20] Elbashti ME, Sumita YI, Kelimu S, Aswehlee AM, Awuti S, Hattori M, et al. Application of digital technologies in maxillofacial prosthetics literature: a 10-year observation of five selected prosthodontics journals. Int J Prosthodontics 2019;32(1):45–50. https://doi.org/10.11607/ijp.5932.
- [21] Tao O, Kort-Mascort J, Lin Y, Pham H, Charbonneau A, ElKashty O, et al. The applications of 3d printing for craniofacial tissue engineering. Micromachines (Basel) 2019;10(7):480. https://doi.org/10.3390/mi10070480.
- [22] ISO/ASTM 52900.2015. Additive manufacturing ‘General principles’ Terminology; 2015.https://doi.org/10.1520/ ISOASTM52900-15.
- [23] Harris BT, Montero D, Grant GT, Morton D, Llop DR, Lin WS. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and cad-cam interim complete removable and fixed dental prostheses: a clinical report. J Prosthetic Dentistry 2017;117(2):197–204. https://doi.org/ 10.1016/j.prosdent.2016.06.012.
- [24] Alam MS, Sugavaneswaran M, Arumaikkannu G, Mukherjee B. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: a pilot study. Orbit (Amsterdam, Netherlands) 2017;36(4):223–7. https://doi. Org/10.1080/01676830.2017.1287741.
- [25] Ruiters S, Sun Y, de Jong S, Politis C, Mombaerts I. Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. Brit J Ophthalmol 2016;100(7):879–81. https://doi.org/10.1136/bjophthalmol2016-308399.
- [26] Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthodontics 2019;28(1):10–4. https://doi.org/10.1111/jopr.13001.
- [27] Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y, et al. Computerassisted technique for the design and manufacture of realistic facial prostheses. Brit J Oral Maxillofac Surg 2010;48 (2):105–9. https://doi.org/10.1016/j.bjoms.2009.05.009.
- [28] Szymczyk-Ziókowska P, Asbowska MB, Detyna J, Michalak I, Grubera P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 2020;40(2):624–38. https:// doi.org/10.1016/j.bbe.2020.01.015.
- [29] Jindal S, Manzoor F, Haslam N, Mancuso E. 3d printed composite materials for craniofacial implants: current concepts, challenges and future directions. Int J Adv Manuf Technol 2021;112:635–53. https://doi.org/10.1007/s00170-020- 06397-1.
- [30] Stodolak E, Matraszek H, Góra A, Błazewicz S. Investigations _ on improvement of functionality of silicone ectoprostheses. Eng Biomater 2008;11(81–84):31–5.
- [31] Hu S, Arnaoutakis D, Kadakia S, Vest A, Sawhney R, Ducic Y. Osseointegrated implants and prosthetic reconstruction following skull base surgery. Semin Plast Surg 2017;31 (4):214–21. https://doi.org/10.1055/s-0037-1607201.
- [32] Powell SK, Cruz RLJ, Ross MT, Woodruff MA. Past, present, and future of soft-tissue prosthetics: advanced polymers and advanced manufacturing. Adv Mater 2020;32(42):2001122. https://doi.org/10.1002/adma.202001122.
- [33] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3d printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthetic Dentistry 2018;120 (2):303–8. https://doi.org/10.1016/j.prosdent.2017.11.007.
- [34] Subramaniam S, Breik O, Cadd B, Peart G, Wiesenfeld D, Heggie A, et al. Long-term outcomes of craniofacial implants for the restoration of facial defects. Int J Oral Maxillofac Surg 2018;47(6):773–82. https://doi.org/10.1016/j. Ijom.2018.01.013.
- [35] Farook TH, Jamayet NB, Abdullah JY, Rajion ZA, Alam MK. A systematic review of the computerized tools and digital techniques applied to fabricate nasal, auricular, orbital and ocular prostheses for facial defect rehabilitation. J Stomatol Oral Maxillofac Surg 2020;121(3):268–77. https://doi.org/ 10.1016/j.jormas.2019.10.003.
- [36] Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assisted Radiol Surg 2010;5(4):335–41. https://doi. org/10.1007/s11548-010-0476-x.
- [37] Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018;20:44–67. https://doi.org/10.1016/j.addma.2017.12.002.
- [38] Peng Q, Tang Z, Liu O, Peng Z. Rapid prototyping-assisted maxillofacial reconstruction. Ann Med 2015;47(3):186–208. https://doi.org/10.3109/07853890.2015.1007520.
- [39] Valerga Puerta AP, Sanchez DM, Batista M, Salguero J. Criteria selection for a comparative study of functional performance of Fused Deposition Modelling and Vacuum Casting processes. J Manuf Processes 2018;35:721–7. https://doi.org/ 10.1016/j.jmapro.2018.08.033.
- [40] Ilea A, Vâjâean C, Blescu H, Câmpian RS. Aesthetic facial reconstruction using eye epitheses: a case report. Anatomy Physiol Biochem Int J 2017;3(4):147–151.https://doi.org/10. 19080/APBIJ.2017.03.555620.
- [41] Liao YL, Wu SY, Tsai YJ. Long-term results of autologous auricular cartilage graft applied in anophthalmic orbits unable to wear prosthesis. J Ophthalmol 2019;2019:7197063. https://doi.org/10.1155/2019/7197063.
- [42] Jamayet NB, Abdullah YJ, Rajion ZA, Husein A, Alam MK. New approach to 3d printing of facial prostheses using combination of open source software and conventional techniques: a case report. Bull Tokyo Dental College 2017;58 (2):117–24. https://doi.org/10.2209/tdcpublication.2016-0021.
- [43] Cevik P, Kocacikli M. Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: a case report. Int J Artif Organs 2020;43(5):343–7. https://doi. Org/10.1177/0391398819887401.
- [44] Elbashti M, Sumita Y, Aswehlee A, Seelaus R. Smartphone application as a low-cost alternative for digitizing facial defects: is it accurate enough for clinical application? Int J Prosthodontics 2019;32(6):541-3. https://doi.org/10.11607/ ijp.6347.
- [45] Nightingale RC, Ross MT, Allenby MC, Woodruff MA, Powell SK. A method for economical smartphone-based clinical 3D facial scanning. J Prosthodontics 2020;29(9):818–25. https:// doi.org/10.1111/jopr.13274.
- [46] Ross MT, Cruz R, Brooks-Richards TL, Hafner LM, Powell SK, Woodruff MA. Comparison of three-dimensional surface scanning techniques for capturing the external ear. Virtual Phys Prototyping 2018;13(4):255–65. https://doi.org/10.1080/ 17452759.2018.1493803.
- [47] Goel GK, Jain D, Goel D, Juneja P. Rehabilitation after surgical treatment for retinoblastoma: ocular prosthesis for a 6- month-old child. J Prosthodontics 2012;21(5):408–12. https:// doi.org/10.1111/j.1532-849X.2011.00840.x.
- [48] Unkovskiy A, Roehler A, Huettig F, Geis-Gerstorfer J, Brom J, Keutel C, et al. Simplifying the digital workflow of facial prostheses manufacturing using a three-dimensional (3d) database: setup, development, and aspects of virtual data validation for reproduction. J Prosthodontic Res 2019;63 (3):313–20. https://doi.org/10.1016/j.jpor.2019.01.004.
- [49] Fantini M, De Crescenzio F, Ciocca L. Design and Rapid Manufacturing of anatomical prosthesis for facial rehabilitation. Int J Interact Design Manuf 2013;7:51–62. https://doi.org/10.1007/s12008-012-0159-7.
- [50] Eggbeer D, Bibb R, Evans P, Ji L. Evaluation of direct and indirect additive manufacture of maxillofacial prostheses. Proc Inst Mech Eng Part H 2012;226(9):718–728.https://doi.org/ 10.1177/0954411912451826.
- [51] Liravi F, Toyserkani E. Additive manufacturing of silicone structures: a review and prospective. Addit Manuf 2018;24:232-42. https://doi.org/10.1016/j.addma.2018.10.002.
- [52] Unkovskiy A, Wahl E, Huettig F, Keutel C, Spintzyk S. Multimaterial 3d printing of a definitive silicone auricular prosthesis: an improved technique. J Prosthetic Dentistry 2021:125(6):946–950.https://doi.org/10.1016/j.prosdent.2020. 02.021.
- [53] Goh DG, Agarwala S, Goh GL, Gikshit V, Sing SL, Yeong WY. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Sci Technol 2017;63:140–51. https://doi.org/10.1016/j.ast.2016.12.019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07d83f7e-c5a9-4e55-b4c2-241661973b24