PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The three-spined stickleback (Gasterosteus aculeatus) infection with Schistocephalus solidus in Hel marina (Puck Bay, Baltic Sea, Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Parasitic relations between animals are very common in wild nature. In this paper, we studied levels of infection in three-spined stickleback with plerocercoids of Schistocephalus solidus from Puck Bay (Baltic Sea, Poland). The total prevalence of infection was 54.2%, while proportion of infected individuals was significantly higher for females than for males. The body width was found to be significantly positively correlated with the number and the weight of parasites. In spite of the increasing deterioration of the Baltic Sea ecosystem by excessive eutrophication and hypoxia, lower prevalence of infection compared to previous published data indicates that there are likely other factors than pollution affecting the life cycle of parasites and the level of parasitism.
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
Bibliografia
  • [1]. Banbura, J. (1994). Lateral plate morph differentiation on freshwater and marine populations of the three-spined stickleback, Gasterosteus aculeatus, in Poland. Journal of Fish Biology. 44: 773-783.
  • [2]. Barber, I. (2013). Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends in Parasitology. 29: 556-566. DOI 10.1016/j.pt.2013.09.004.
  • [3]. Barber, I. & Huntingford, F.A. (1995). The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spinned sticklebacks, Gasterosteus aculeatus. Behaviour. 132: 1223-1240.
  • [4]. Barber, I. & Scharsack, J.P. (2010). The three-spined stickleback- Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology. 137: 411-424. DOI 10.1017/S0031182009991466.
  • [5]. Bergersen, R. (1996). Sticklebacks from Greenland. Journal of Fish Biology. 48: 799-801.
  • [6]. Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology. 83: 575-583.
  • [7]. Carstensen, J., Andersen, J.H., Gustafsson, B.G. & Conley, D.J. (2014a). Deoxygenation of the Baltic Sea during last century. Proceedings of the National Academy of Sciences of the United States of America. 111: 5628-5633. DOI 10.1073/ pnas.132315611.
  • [8]. Carstensen, J., Conley, D.J., Bonsdorff, E., Gustafsson, B.G., Hietanen, S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D.C., Slomp, C.P., Timmermann, K. & Voss, M. (2014b). Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. AMBIO: A Journal of the Human Environment. 43: 26-36. DOI 10.1007/s13280- 013-0474-7.
  • [9]. Chappell, L.H. (1969). The Parasites of the Three-spined Stickleback Gasterosteus aculeatus L. from a Yorkshire Pond. I. Seasonal Variation of Parasite Fauna. Journal of Fish Biology. 1: 137-152.
  • [10]. Chubb, J.C., Ball, M.A. & Parker, G.A. (2009). Living in intermediate hosts: evolutionary adaptations in larval helminths. Trends in Parasitology. 26: 93-102. DOI 10.1016/j. pt.2009.11.008.
  • [11]. Clarke, A.S. (1954). Studies on the life cycle of the pseudophyllidean cestode Schistocephalus solidus. Proceedings of the Zoological Society of London. 124: 257-302.
  • [12]. Confer, A., Vu, V., Drevecky, C.J. & Aguirre, W.E. (2012). Occurrence of Schistocephalus solidus in anadromous threespine stickleback. Journal of Parasitology. 98: 676-678. DOI 10.1645/GE-2968.1.
  • [13]. Conley, D.J. (2012). Save the Baltic Sea. Nature. 486: 463-464. DOI 10.1038/486463a.
  • [14]. Dingemanse, N.J., Oosterhof, Ch., Van der Plas, F. & Barber I. (2009). Variation in stickleback head morphology associated with parasite infection. Biological Journal of the Linnean Society. 96: 759-768. DOI 10.1111/j.1095-8312.2008.01179.x.
  • [15]. Giles, N. (1983). Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Animal Behaviour. 31: 1192-1194.
  • [16]. Hendry, A.P., Peichel, C.L., Matthews, B., Boughman, J.W. & Nosil, P. (2013). Stickleback research: the now and the next. Evolutionary Ecology Research. 15: 1-31.
  • [17]. Heins, D.C. & Baker, J.A. (2008). The stickleback-Schistocephalus host-parasite system as a model for understanding the effect of a macroparasite on host reproduction. Behaviour. 145: 625-645. DOI 10.1163/156853908792451412.
  • [18]. Hoberg, E.P., Henny, C.J., Hedstrom, O.R. & Grove, R.A. (1997). Intestinal helminths of river otters (Lutra canadensis) from the Pacific Northwest. Journal of Parasitology. 83: 105-110.
  • [19]. Hopkins, C.A. & Smyth, J.D. (1951). Notes on the morphology and life history of Schistocephalus solidus (Cestoda, Diphyllobothriidae). Parasitology. 41: 283-291.
  • [20]. Jäger, I. & Schj0rring, S. (2006). Multiple infections: Relatedness and time between infections affect the establishment and growth of the cestode Schistocephalus solidus in its stickleback host. Evolution. 60(3): 616-622. DOI: 10.1111/ j.0014-3820.2006.tb01141.x
  • [21]. Jakobsen, J. (2011). Parasite communities of two three-spined stickleback (Gasterosteus aculeatus) populations - Effects of a local-scale host introduction? MS thesis in Biology, University of Tr0mso, 43 pp.
  • [22]. Kautsky, N., Kautsky, H., Kautsky, U. & Waern, M. (1986). Decreased depth penetration of Fucus vesiculosus since the1940’s indicates eutrophication of the Baltic Sea. Marine Ecology Progress Series. 28: 1-8.
  • [23]. Lafferty, K.D. (1997). Environmental parasitology: What can parasites tell us about human impacts on the environment? Parasitology Today. 13: 251-255.
  • [24]. Leppakoski, E. & Olenin, S. (2000). Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions. 2: 151-163. DOI 10.1023/A:1010052809567.
  • [25]. Lobue, C.P. & Bell, M.A. (1993). Phenotypic manipulation by the cestode parasite Schistocephalus solidus of its intermediate host, Gasterosteus aculeatus, the threespine stickleback. The American Naturalist. 142: 725-735.
  • [26]. Mackenzie, K. (1999). Parasites as pollution indicators in marine ecosystems: a proposed Early Warning System. Marine Pollution Bulletin. 38(11): 955-959. DOI 10.1016/S0025- 326X(99)00100-9.
  • [27]. MacColl, A.D.C. (2009). Parasite burdens differ between sympatric three-spined stickleback species. Ecography. 32: 153-160. DOI 10.1111/j.1600-0587.2008.05486.x.
  • [28]. Marcogliese, D.J. (2005). Parasites of the superorganism: Are they indicators of ecosystem health? International Journal for Parasitology. 35: 705-716. DOI 10.1016/j.ijpara.2005.01.015.
  • [29]. Moore, J. (2002). Parasites and the behavior of animals. Oxford: Oxford University Press.
  • [30]. Morozinska-Gogol, J. (2006). A checklist of parasites recorded on stickleacks (Actinopterygii: Asterosteidae) from Poland. Parasitology International. 55: 69-73. DOI 10.1016/j. parint.2005.10.002.
  • [31]. Morozinska-Gogol, J. (2011). Changes in levels of infection with Schistocephalus solidus (Müller, 1776) of the three- spined stickleback Gasterosteus aculeatus (Actinopterygii: Gasterosteidae) from the Gdynia Marina. Oceanologia. 53: 181-187. DOI 10.5697/oc.53-1.181.
  • [32]. NatureServe (2013). Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Version 2014.2. Retrieved November 04, 2014, from www.iucnredlist.org
  • [33]. Ness, J.H. & Foster, S.A. (1999). Parasite-associated phenotype modifications in threespine stickleback. Oikos. 85: 127-134.
  • [34]. Ojaveer, H. & Kotta, J. (2006). Alien invasive species in the north¬easter Baltic Sea: populatiomn dynamics and ecological impacts. Estonian Marine Institute Report No. 14: 64 pp.
  • [35]. Paavola, M., Olenin, S. & Leppakoski, E. (2005). Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine, Coastal and Shelf Science. 64: 738-750. DOI 10.1016/j. ecss.2005.03.021.
  • [36]. Poulin, R., Blanar, C.A., Thieltges, D.W. & Marcogliese, D.J. (2011). The biogeography of parasitism in sticklebacks: distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography. 34: 540-551. DOI 10.1111/j.1600-0587.2010.06826.x.
  • [37]. Poulin, R. & Thomas, F. (1999). Phenotypic variability induced by parasites: extent and evolutionary implications. Prasitology Today. 15: 28-32.
  • [38]. Ranta, E. (1995). Schistocephalus infestation improves prey- size selection by three-spined sticklebacks, Gasterosteus aculeatus. Journal of Fish Biology. 46: 156-158.
  • [39]. Reimchen, T.E. & Nosil, P. (2001). Ecological causes of sex-biased parasitism in threespine stickleback. Biological Journal of the Linnean Society. 73: 51-63. DOI: 10.1111/j.1095-8312.2001. tb01346.x
  • [40]. Reimer, L.W (1995). Parasites especially of piscean hosts as indicators of the eutrophication in the Baltic Sea. Applied Parasitology. 36: 124-135.
  • [41]. Rolbiecki, L., Rokicki, J., Morozińska-Gogol, J. & Chibani, M. (1999). Larval stages of helminths in fish from the Vistula Lagoon and the Gulf of Gdańsk in relation to bird occurrence. Bulletin of the Sea Fisheries Institute. 147: 51-60.
  • [42]. Rönnberg, C. & Bonsdorff, E. (2004). Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia. 514: 227-241, DOI 10.1007/978-94-017-0920-0_21.
  • [43]. Rózsa, L., Reiczigel, J. & Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology. 86: 228¬232, DOI 10.1645/0022-3395(2000)086 [0228:QPIS0H] 2.0. C0;2.
  • [44]. StatSoft, Inc. (2013). STATISTICA (data analysis software system), version 12. Retrieved November 04, 2014, from www.statsoft.com.
  • [45]. Sures, B. (2004). Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology. 20: 170-177. DOI 10.1016/j.pt.2004.01.014.
  • [46]. Tierney, J.F. (1994). Effects of Schistocephalus solidus (Cestoda) on the food intake and diet of the three-spined stickleback, Gasterosteus aculeatus. Journal of Fish Biology. 44: 731-735.
  • [47]. Valtonen, E.T., Pulkkinen, K., Poulin, R. & Julkunen, M. (2001). The structure of parasite component communities in brackish water fishes of the northeastern Baltic Sea. Parasitology. 122: 471-481.
  • [48]. Wootton, R.J. (1976). The biology of the sticklebacks. London: Academic Press.
  • [49]. Zander, C.D. (1998). Ecology of host parasite relationships in the Baltic Sea. Naturwissenschaften. 85: 426-36.
  • [50]. Zander, C.D. (2007). Parasite diversity of sticklebacks from the Baltic Sea. Parasitology Research. 100: 287-297. DOI 10.1007/ s00436-006-0282-0.
  • [51]. Zander, C.D. & Kesting, V. (1996). The indicator properties of parasites communities of gobies (Teleostei, Gobiidae) from Kiel and Lübeck Bight. Applied Parasitology. 37: 186-204.
  • [52]. Zander, C.D. & Reimer, L.W. (2002). Parasitism at the ecosystem level in the Baltic Sea. Parasitology. 124: 119-135. DOI 10.1017/S0031182002001567.
  • [53]. Zander, C.D., Strohbach, U. & Groenewold, S. (1993). The importance of gobies (Gobiidae, Teleostei) as hosts and transmitters of parasites in the SW Baltic. Helgoländer Meeresuntersuchungen. 47: 81-111. DOI 10.1007/ BF02366186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07d3f503-8741-4dc1-b1c8-f66b0b4f7b1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.