PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Retrofitting Heat Exchanger Network of Industrial Ethylene Glycol Plant using Heat Integration based on Pinch Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat integration by pinch method is used to modify the heat exchanger network of an industrial ethylene glycol plant. The aim is to reduce the energy cost by operating the plant close to the maximum energy recovery. Pinch analysis identified a pinch temperature of 483 K, a minimum heating utility of 13,490.9 MJ/ton EO, and a minimum cooling utility of 25,697 MJ/ton EO. Using the pinch decomposition diagram and the standard procedure for matching hot and cold streams, a retrofit of the heat exchangers network is developed. The modified heat exchanger network reduces the external cooling duty by 45.5% and the external heating duty by 93.3%. This promising cost savings provide enough justification for restructuring the existing ethylene glycol plant. Moreover, an additional 6% reduction in the external cooling duty can be achieved by integrating the steam turbine below the pinch point.
Rocznik
Strony
8--20
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
  • Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
autor
  • Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
  • Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
  • Functional Chemicals, Sabic Technology Centre, Riyadh, Saudi Arabia
  • Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
Bibliografia
  • 1. Dye, R.F. (2001). Ethylene Glycol Technology. Korean J. Chem. Engin.18, 571–579. DOI: 10.1007/BF02706370.
  • 2. Nimkar, S. & Mewada, R. (2016). Effect of catalyst selectivity on exergetic and exergoeconomic evaluation of ethylene oxide/ethylene glycol process. Int. J. Exergy, 21(2), 157–185. DOI: 10.1504/IJEX.2016.078924.
  • 3. Kawabe, K. (2010). Development of Highly Selective Process for Mono-Ethylene Glycol Production from Ethylene Oxide via Ethylene Carbonate Using Phosphonium Salt Catalyst, Catal Surv Asia 14, 111–115. DOI:10.1007/s10563-010-9094-4.
  • 4. Yue, H., Zhao, Y., Ma, X. & Gong, J. (2012). Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev., 41, 4218–4244. DOI: 10.1039/C2CS15359A.
  • 5. Wang, F., Zhao, Y., Yang, O., Cai, J. & Deng, M. (2013). Process safety data management program based on HAZOP analysis and its application to an ethylene oxide/ethylene glycol plant. J. Loss Prevent. Process Ind., 26, 1399–1406. DOI: 10.1016/j.jlp.2013.08.020.
  • 6. Huber, G.,W., Iborra, S. & Corma, A.J. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 106, 4044–4098. DOI: 10.1021/cr068360d.
  • 7. Serov, A. & Kwak, C.J. (2010). Recent achievements in direct ethylene glycol fuel cells (DEGFC), Appl. Catal. B-Environ. 97, 1–12. DOI: 10.1016/j.apcatb.2010.04.011.
  • 8. Bianchini, C. & Shen, P.K. (2009). Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev., 109, 4183–4206. DOI: 10.1021/cr9000995.
  • 9. Staples, C.A., Williams, J.B., Craig, G.R. & Roberts, K.M. (2001). Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere, 43, 377–383. DOI: 10.1016/S0045-6535(00)00148-X.
  • 10. Yang, Q., Zhang, D., Zhou, H. & Zhang, C.J. (2018). Process simulation, analysis and optimization of a coal to ethylene glycol process. Energy. 155, 521–534. DOI: 10.1016/j.energy.2018.04.153.
  • 11. Van, Hal, J.W., Ledford, J.S. & Zhang, X.J. (2007). Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to mono ethylene glycol (MEG). Catalysis Today, 123, 310–315. DOI:10.1016/j.cattod.2007.02.015.
  • 12. Zhu, F., Huang, K., Wang, S., Shan, L. & Zhu, Q. (2009). Towards further internal heat integration in design of reactive distillation columns—Part IV: Application to a high-purity ethylene glycol reactive distillation column. Chem. Eng. Sci. 64, 3498–3509. DOI: DOI:10.1016/j.ces.2009.04.031.
  • 13. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comp. Chem. Engin. 12(6), 503–530. DOI: 10.1016/0098-1354(88)87002-9.
  • 14. Yoon, S-G., Lee, J. & Park, S., (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Thermal Engin., 27, 886–893. DOI: 10.1016/j. applthermaleng.2006.09.001.
  • 15. Ali, E. & Hadj-Kali, M. (2018). Energy Effi ciency Analysis of Styrene Production by Adiabatic Ethylbenzene Dehydrogenation Using Exergy Analysis and Heat Integration, Polish J. Chem. Technol., 20(1), 35–40. DOI: 10.2478/pjct-2018-0006.
  • 16. Warumporn, P. & Kitipat, S. (2013). Process Heat Integration between Distillation Columns for Ethylene Hydration Process. Chem. Engin. Transactions, 35, 181–186. DOI: 10.3303/CET1335030.
  • 17. Feng, X., Pu, J., Yang, J. & Chu, K.H. (2011). Energy recovery in petrochemical complexes through heat integration retrofit analysis. Appl. Energy, 88, 1965–1982. DOI: 10.1016/j. apenergy.2010.12.02.
  • 18. Liang, C. & Feng, X. (2011). Heat Integration of a Continuous Reforming Process. Chem. Engin. Transaction, 25, 213–218. DOI: 10.3303/CET11250367.
  • 19. Piacentino, A.J. (2011). Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks. Appl. Thermal Engin., 31, 3479–3499. DOI: 10.1016/j.applthermaleng.2011.07.002.
  • 20. Knopf, F.C. (2012). Modeling, Analysis and Optimization of Process and Energy Systems, Wiley, New Jersey, USA.10.1002/9781118121160.
  • 21. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA.
  • 22. Smith, J.M., Van, Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, Boston, USA.
  • 23. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX.
  • 24. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. GB-93-053046; EDB-93-157424.
  • 25. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York. USA.
  • 26. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA.
  • 27. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, Cambridge, UK.10.1533/9780857097255.
  • 28. Robin, S. (2005). Chemical Process Design and Integration, McGraw-Hill, New Jersey, USA.
  • 29. Kemp, I. (2007). Pinch analysis and Process Integration, Elsevier, USA.
  • 30. Dimian, A.C. (2003). Chapter 10 Pinch point analysis, Computer Aided Chem. Engin.13, 393–434. DOI: 10.1016/S1570-7946(03)80034-2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07c96fbe-eaa9-43fd-a4b3-1e4fd70a119e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.