Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A comparison of methods for obtaining nanocellulose using acid and ionic liquid hydrolysis reactions. In this study, two methods were compared, i.e. acid hydrolysis using sulphuric acid (VI) and ionic liquid hydrolysis using 1-methyl-3-butylimidazolium chloride to obtain nanocellulose from Sigmacell Cellulose Type 20. The efficiency of both processes was tested for weight loss of the material during the reaction. The study showed that much more material can be obtained using ionic liquid hydrolysis than using acid hydrolysis. A dynamic light scattering study was performed to determine material particle size before and after these processes. Particles of nanometric size were recorded only for cellulose after the reaction with an ionic liquid. In addition, Fourier transform infrared spectroscopy was performed to determine the chemical structure of the materials tested.
Rocznik
Tom
Strony
19--23
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, PL-60625 Poznan, Poland
autor
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, PL-60625 Poznan, Poland
autor
- Poznań University of Life Sciences, Department of Food Biochemistry and Analysis, Mazowiecka 48, PL- 60623 Poznan, Poland
Bibliografia
- 1. ADSUL M., SON S.K., BHARGAVA S.K., BANSAL V. 2012: Facile Approach forthe Dispersion of Regenerated Cellulose in Aqueous System in the Form ofNanoparticles. Biomacromolecules 13(9): 2890-2895
- 2. BECK-CANDANEDO S., ROMAN M., GRAY D. G. 2005: Effect of reactionconditions on the properties and behaviour of wood cellulose nanocrystal suspensions.Biomacromolecules 6(2): 1048-1054.
- 3. BHAT A. H., KHANB I., USMANI M. A., UMAPATHI R., AL-KINDY S. 2019:Cellulose an ageless renewable green nanomaterial for medical applications: Anoverview of ionic liquids in extraction, separation and dissolution of cellulose,International Journal of Biological Macromolecules 129: 750-777.
- 4. DHARASKAR S. A., VARMA M. N., SHENDE D. Z., YOO C. K., WASEWAR K.L. 2013: Synthesis, Characterization and Application of 1-Butyl-3 MethylimidazoliumChloride as Green Material for Extractive Desulfurization of Liquid Fuel. TheScientific World Journal 2013: 1-9.
- 5. ELAZZOUZI-HAFRAOUI S., NISHIYAMA Y., PUTAUX J. L., HEUX L.,DUBREUIL F., ROCHAS C. 2008: The shape and size distribution of crystallinenanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules9(1): 57-65.
- 6. HABIBI Y., LUCIA L. A., ROJAS O. J. 2010: Cellulose nanocrystals: chemistryselfassembly, and applications. Chemical Reviews 110(6): 3479-3500.
- 7. JIANG F., HSIEH Y. L. 2013: Chemically and mechanically isolated nanocelluloseand their self-assembled structures, Carbohydrate Polymers 95: 32-40.
- 8. MAO J., HECK B., REITER G., LABORIE M. P. 2015: Cellulose nanocrystals’production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate([Bmim]HSO 4 ) – mediated hydrolysis. Carbohydrate Polymers 117: 443-451.
- 9. NICKERSON R. F., HABRLE, J. A. 1947: Cellulose intercrystalline structure.Industrial & Engineering Chemistry 39(11): 1507-1512.
- 10. RIBEIRO R. S. A., POHLMANN B. C., CALADO V., BOJORGE N., PEREIRA N.2019: Production of nanocellulose by enzymatic hydrolysis: Trends and challenges.Engineering in Life Sciences 19: 279-291.
- 11. SHAK K., PANG Y., MAH S. 2018: Nanocellulose: Recent advances and itsprospects in environmental remediation. Beilstein Journal of Nanotechnology 9: 2479-2498.
- 12. SUZUKI T., KONO K., SHIMOMURA K., MINAMI H. 2014: Preparation ofcellulose particles using an ionic Journal of Colloid and Interface Science 418: 126-131.
- 13. SWATLOSKI R., SPEAR S., HOLBREY J., ROGERS R. 2002: Dissolution ofcellulose with ionic liquids. Journal of the American Chemical Society 124: 4974-4975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07c2ac48-ab72-440c-828d-f13a73570c63