PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of loss distribution of conventional boost, Z-source and Y-source converters for wide power and voltage range

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study the results show that the boost converter has higher efficiency than the Z-source and Y-source converter for these specific voltage gain of 2 and 4. The operational principle, mathematical derivations, simulation results and final comparisons are presented in this paper.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
autor
  • Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
autor
  • Department of Electrical, Mechanical and Mechatronic Systems, University of Technology Sydney, Sydney, Australia
autor
  • Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
Bibliografia
  • [1] S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran, and P. Tavner, “Condition monitoring for device reliability in power electronic converters: A review,” IEEE Trans. on Power Electronics, vol. 25, no. 11, pp. 2734-2752, Nov. 2010.
  • [2] H. Chung, H. Wang, F. Blaabjerg, and M. Pecht, Reliability of Power Electronics Converter Systems. The Institution of Engineering and Technology (IET), Dec. 2015.
  • [3] K. Ramtek and Y. Nagpur, “Dynamic modelling and controller design for z-source dc-dc converter,” International Journal of Scientific Engineering and Technology, vol. 2, no. 4, pp. 272-277, Apr. 2013.
  • [4] F.Z. Peng, M. Shen, and Z. Qian, “Maximum boost control of the z-source inverter,” in Proc. of IEEE 35th Annual Power Electronics Specialists Conference (PESC), vol. 1, June 2004, pp. 255-260 Vol. 1.
  • [5] Y. Siwakoti, P.C. Loh, F. Blaabjerg, and G. Town, “Ysource impedance network,” in Proc. of 29th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), March 2014, pp. 3362-3366.
  • [6] Y. Siwakoti, P.C. Loh, F. Blaabjerg, S. Andreasen, and G. Town, “Y-source boost dc/dc converter for distributed generation,” IEEE Trans. on Industrial Electronics, vol. 62, no. 2, pp. 1059-1069, Feb 2015.
  • [7] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Investigation of efficiency and thermal performance of the y-source converters for a wide voltage range,” Journal of Renewable Energy and Sustainable Development, vol. 1, no. 2, pp. 300-305, Jan. 2016.
  • [8] Y. Siwakoti, F.Z. Peng, F. Blaabjerg, P.C. Loh, and G. Town, “Impedance-source networks for electric power conversion part i: A topological review,” IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb 2015.
  • [9] F.Z. Peng, “Z-source inverter,” IEEE Trans. on Industry Applications, vol. 39, no. 2, pp. 504-510, Mar 2003.
  • [10] W.T. Franke, M. Mohr, and F.W. Fuchs, “Comparison of a z-source inverter and a voltage-source inverter linked with a dc/dc-boost-converter for wind turbines concerning their efficiency and installed semiconductor power,” in Proc. of IEEE Power Electronics Specialists Conference (PESC), June 2008, pp. 1814-1820.
  • [11] N. Baker, M. Liserre, L. Dupont, and Y. Avenas, “Improved reliability of power modules: A review of online junction temperature measurement methods,” IEEE Industrial Electronics Magazine, vol. 8, no. 3, pp. 17-27, Sept 2014.
  • [12] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Thermal performance and efficiency investigation of conventional boost, z-source and y-source converters,” in IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), June 2016, pp. 1-6.
  • [13] D.J.S. Newlin, R. Ramalakshmi, and S. Rajasekaran, “A performance comparison of interleaved boost converter and conventional boost converter for renewable energy application,” in International Conference on Green High Performance Computing (ICGHPC), March 2013, pp. 1-6.
  • [14] Magnetics. Magnetics powder core catalog. [Online]. Available: http://www.mag-inc.com/company/news/new-powder-core-catalog.
  • [15] Metglas. Powerlite inductor cores. [Online]. Available: http://www.elnamagnetics.com/wp-content/uploads/catalogs/metglas/powerlite.pdf.
  • [16] R.W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Edition. Springer Science + Bussiness Media, LLC, May 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07bfc7ef-4e49-4895-b127-fabe999ceaaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.