PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Depositional environment, geochemistry and diagenetic control of the reservoir quality of the Oligo-Miocene Asmari Formation, a carbonate platform in SW Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Oligo-Miocene Asmari Formation in SW Iran represents sedimentation on a carbonate platform. Thin-section analysis allowed distinguishing 26 microfacies, which can be grouped into twelve microfacies associations that represent four main depositional environments: open-marine, outer-ramp, middle-ramp and inner-ramp settings. The carbonates have undergone a complex diagenetic history, from penecontemporaneous shallow-marine consolidation to deep-burial diagenesis. The most important processes that affected the carbonates are dolomitization (in different stages), cementation (by anhydrite and calcite), dissolution (fabric-selective and fabric-destructive), fracturing, stylolitization and neomorphism. Minor diagenetic processes that modified the sediments are pyritization, silicification, glauconitization, micritization and bioturbation. Diagenetic processes such as dolomitization, dissolution and fracturing improved the reservoir quality, whereas cementation and compaction have reduced the reservoir quality of the Asmari Formation. Whole-rock oxygen and carbon isotope analyses of limestone samples show that the isotopic composition of the carbonates was hardly affected by diagenesis and that the carbonates remained roughly in isotopic equilibrium with the Paleogene seawater. Some samples have, however, been affected significantly by diagenesis during deep burial in a closed to semi-closed diagenetic system.
Rocznik
Strony
art. no. 27
Opis fizyczny
Bibliogr. 87 poz., fot., rys., tab., wykr.
Twórcy
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Sciences, Azadi Square, Mashhad, Razavi Khorasan Province, Iran
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Sciences, Azadi Square, Mashhad, Razavi Khorasan Province, Iran
  • Shandong University of Science and Technology, College of Earth Science and Engineering, Qingdao 266590, Shandong, China
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Sciences, Azadi Square, Mashhad, Razavi Khorasan Province, Iran
  • University of Tehran, School of Geology, College of Science, 16th Azar Street, Enghelab Square, Tehran, Iran
Bibliografia
  • 1. Adabi, M.H., 2004. A re-evaluation of aragonite versus calcite seas. Carbonates and Evaporites, 19: 133-141.
  • 2. Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet-Dagh Basin, N.E. Iran. Carbonates and Evaporites, 24: 16-32.
  • 3. Adabi, M.H., Mehmandosti, E.A., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, SW Iran. Journal of Asian Earth Sciences, 33: 267-277.
  • 4. Adabi, M.H., Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology, 72: 253-267.
  • 5. Adabi, M.H., Zohdi, A., Ghabeishavi, A., Amiri-Bakhtiyar, H., 2008. Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran. Facies, 54: 499-512.
  • 6. Ahr, W.M., 2008. Geology of Carbonate Reservoirs: the Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. John Wiley and Sons.
  • 7. Alavi, M., 2004. Regional stratigraphy of the Zagros Fold-Thrust Belt of Iran and its proforeland evolution. American Journal of Science, 304: 1-20.
  • 8. Amao, A.O., Kaminski, M.A., Setoyama, E., 2016. Diversity of foraminifera in a shallow restricted lagoon in Bahrain. Micropaleontology, 62: 197-211.
  • 9. Anderson, T.F., Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. SEPM Short Course, 10: 1.1-1.151.
  • 10. Aqrawi, A.A.M., Keramati, M., Ehrenberg, S.N., Pickard, N., Moallemi, A., Svånå, T., Darke, G., Dickson, J.A.D., Oxtoby, N.H., 2006. The origin of dolomite in the Asmari Formation (Oligocene-lower Miocene), Dezful Embayment, SW Iran. Journal of Petroleum Geology, 29: 381-402.
  • 11. Asprion, U., Westphal, H., Nieman, M., Pomar, L., 2009. Extrapolation of depositional geometries of the Menorcan Miocene carbonate ramp with ground-penetrating radar. Facies, 55: 37-46.
  • 12. Avarjani, S., Mahboubi, A., Moussavi-Harami, R., Amiri-Bakhtiar, H., Brenner, R.L., 2015. Facies, depositional sequences, and biostratigraphy of the Oligo-Miocene Asmari Formation in Marun oilfield, North Dezful Embayment, Zagros Basin, SW Iran. Palaeoworld, 24: 336-358.
  • 13. Azomani, E., Azmy, K., Blamey, N., Brand, U., Al-Aasm, I., 2013. Origin of Lower Ordovician dolomites in eastern Laurentia: controls on porosity and implications from geochemistry. Marine and Petroleum Geology, 40: 99-114.
  • 14. Bádenas, B., Aurell, M., 2001. Proximal-distal facies relationships and sedimentary processes in a storm dominated carbonate ramp (Kimmeridgian, northwest of the Iberian Ranges, Spain). Sedimentary Geology, 139: 319-340.
  • 15. Bordenave, M.L., Hegre, J.A., 2010. Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geological Society Special Publications, 330: 291-353.
  • 16. Brand, U., Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II: stable isotopes. Journal of Sedimentary Petrology, 51: 987-997.
  • 17. Brigaud, B., Durlet, C., Deconinck, J.F., Vincent, B., Pucéat, E., Thierry, J., Trouiller, A., 2009. Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sedimentary Geology, 222: 181-206.
  • 18. Cantrell, D.L., 2006. Cortical fabrics of Upper Jurassic ooid, Arab Formation, Saudi Arabia: implication for original carbonate mineralogy. Sedimentary Geology, 186: 157-170.
  • 19. Caron, V., Nelson, C., 2009. Diversity of neomorphic fabrics in New Zealand Plio-Pleistocene cool-water limestones: insights into aragonite alteration pathways and controls. Journal of Sedimentary Research, 79: 226-246.
  • 20. Corda, L., Brandano, M., 2003. Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy. Sedimentary Geology, 161: 55-70.
  • 21. Crowe, S.A., Drssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., Canfield, D.E., 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535-538.
  • 22. Dickson, J., 1965. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36: 491-505.
  • 23. Dunham, R., 1962. Classification of carbonate rocks according to depositional texture. AAPG Memoir, 1: 108-121.
  • 24. Ehrenberg, S.N., Walderhaug, O., 2015. Preferential calcite cementation of macropores in microporous limestones. Journal of Sedimentary Research, 85: 780-793.
  • 25. El-Shazly, S., Košťák, M., Abdel-Gawad, G., Kloukčová, B., Saber, S.G., Salama, Y.F., Mazuch, M., Žák, K., 2011. Carbon and oxygen stable isotopes of selected Cenomanian and Turonian rudists from Egypt and Czech Republic, and a note on changes in rudist diversity. Bulletin of Geosciences, 86: 209-226.
  • 26. Embry, A.F., Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19: 730-781.
  • 27. Epstein, S., Mayeda, T., 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4: 213-224.
  • 28. Fallah-Bagtash, R., Jafarian, A., Husinec, A., Adabi, M.H., 2020. Diagenetic stabilization of the Upper Permian Dalan Formation, Persian Gulf Basin. Journal of Asian Earth Sciences, 189: 104-144.
  • 29. Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation, and Application. Springer-Verlag, Berlin.
  • 30. Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
  • 31. Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Tehran University and National Uranian Oil Company Publications, Tehran.
  • 32. Gonera, M., 2012. Palaeoecology of the Middle Miocene foraminifera of the Nowy Sącz Basin (Polísh Outer Carpathians). Geological Quarterly, 56 (1): 107-116.
  • 33. Heap, M.J., Baud, P., Reuschlé, T., Meredith, P.G., 2014. Stylolites in limestones: Barriers to fluid flow? Geology, 42: 51-54.
  • 34. Herndon, E.M., Havig, J.R., Singer, D.M., McCormick, M.L., Kump, L.R., 2018. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayettvile Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63.
  • 35. Heydari, E., 2008. Tectonics versus eustatic control on super sequences of the Zagros Mountains of Iran. Tectonophysics, 451: 56-70.
  • 36. Hollis, C., 2011. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate. Petroleum Geoscience, 17: 223-241.
  • 37. Hood, A., Planavsky, N.J., Wallace, M.W., Wang, X., 2018. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochimica et Cosmochimica Acta, 232: 265-287.
  • 38. Hou, Y., Azmy, K., Berra, F., Jadoul, F., Blamey, N.J., Gleeson, S.A., Brand, U., 2016. Origin of the Breno and Esino dolomites in the western Southern Alps (Italy): implications for a volcanic influence. Marine and Petroleum Geology, 69: 38-52.
  • 39. Huang, S.J., 2010. Carbonate Diagenesis. Geological Publishing House: 29-44.
  • 40. Immenhauser, A., Kenter, J.A., Ganssen, G., Bahamonde, J.R., Van Vliet, A., Saher, M.H., 2002. Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain). Journal of Sedimentary Research, 72: 82-94.
  • 41. Immenhauser, A., Holmden, C., Patterson, W.P., 2008. Interpreting the carbon isotope record of ancient shallow epeiric sea: Lessons from the recent. Geological Asoociation of Canada Special Publication, 48: 135-174.
  • 42. Jafari, J., Mahboubi, A., Moussavi-Harami, R., Al-Aasm, I.S., 2020. The effects of diagenesis on the petrophysical and geochemical attributes of the Asmari Formation, Marun oil field, southwest Iran. Petroleum Science, 17: 1-25.
  • 43. James, N.P., Choquette, P.W., 1990. Limestones - the meteoric diagenetic environment. Diagenesis. Geoscience Canada Reprint Series, 4: 35-73.
  • 44. Keith, M., Weber, J., 1964. Carbon and oxygen isotope composition of selected limestone and fossils. Geochimica et Cosmochimica Acta, 28: 1787-1816.
  • 45. Khatibi-Mehr, M., Adabi, M.H., 2014. Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to Middle Eocene, Alborz Basin, Iran. Carbonates and Evaporites, 29: 155-175.
  • 46. Knorich, A.C., Mutti, M., 2006. Missing aragonitic biota and the diagenetic evolution of heterozoan carbonates: a case study from the Oligo-Miocene of the central Mediterranean. Journal of Sedimentary Research, 76: 871-888.
  • 47. Land, L.S., Hoops, G.K., 1973. Sodium in carbonate sediments and rocks: a possible index to salinity of diagenetic solution. Journal of Sedimentary Petrology, 43: 614-617.
  • 48. Lashgari, A., Hayhat, M.R., Vergés, J., Beamud, E., Najafi, M., Khatib, M.M., Karimnejad, H.R., 2020. Age of synorogenic deposits and timing of folding in Dezful embayment, SW Zagros Fold Belt. Marine and Petroleum Geology, 113: 104148.
  • 49. Lear, C.H., Elderfield, H., Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269-272.
  • 50. Machel, H.G., 2004. Concepts and models of dolomitization: a critical reappraisal. Geological Society Special Publications, 235: 7-63.
  • 51. Madhavaraju, J., Kolosov, I., Buhlak, D., Armstrong-Altrin, J.S., Ramasamy, S., Mohan, S.P., 2004. Carbon and oxygen isotopic signature in Albian-Danian limestones of Cauvery Basin, southeastern India. Gondwana Research, 7: 519-529.
  • 52. Milliman, J.D., 1974. Marine Carbonates Recent Sedimentary Carbonates, Part 1. Springer, Berlin.
  • 53. Moore, C.H., Wade, W.J., 2013. Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic frame - work: porosity evolution and diagenesis in a sequence stratigraphic framework. Developments in Sedimentology, 55.
  • 54. Morrison, J.O., Brand, U., 1986. Geochemistry of Recent marine invertebrates. Geoscience Canada, 13: 237-254.
  • 55. Morse, J.W., Mackenzie, F.T., 1990. Geochemistry of sedimentary carbonates. Development in Sedimentology, 48.
  • 56. Narayanan, V., Anirudhan, S., Grottoli, A.G., 2007. Oxygen and carbon isotope analysis of the Miocene limestone of Kerala and its implications to palaeoclimate and its depositional setting. Current Science, 93: 1155-1159.
  • 57. Navabpour, P., Barrier, E., 2012. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting. Tectonophysics, 581: 76-83.
  • 58. Omidpour, A., Moussavi-Harami, R., Mahboubi, A., Rahimpour-Bonab, H., 2021. Application of stable isotopes, trace elements and spectral gamma-ray log in resolving high-frequency stratigraphic sequences of a mixed carbonate-siliciclastic reservoirs. Marine and Petroleum Geology, 125: 104854.
  • 59. Rahimpour-Bonab, H., Esrafili Dizaji, B., Tavakoli, V., 2010. Dolomitization and anhydrite precipitation in Permo Triassic carbonates at the South Pars gas field, offshore Iran: controls on reservoir quality. Journal of Petroleum Geology, 3: 43-66.
  • 60. Railsback, L.B., Anderson, T.F., Ackerly, S.C., Cisne, J.L., 1989. Paleoceanographic modeling of temperature salinity profiles from stable isotopic data. Paleoceanography, 4: 585-591.
  • 61. Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 10: 114-123.
  • 62. Rao, C.P., 1996. Modern Carbonates, Tropical, Temperate, Polar: Introduction to Sedimentology and Geochemistry. Hobart: University of Tasmania.
  • 63. Rouxel, O.J., Bekker, A., Edwards, K.J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307: 1088-1091.
  • 64. Rowlands, G., Purkis, S., Bruckner, A., 2014. Diversity in the geomorphology of shallow-water carbonate depositional systems in the Saudi Arabian Red Sea. Geomorphology, 222: 3-13.
  • 65. Sandberg, P., 1985. Aragonite cements and their occurrence in ancient limestones. SEPM Special Publication, 36: 33-57.
  • 66. Saura, E., Vergés, J., Homke, S., Blanc, E., Serra-Kiel, J., Bernaola, G., Casciello, E., Fernández, N., Romaire, I., Casini, G., Embry, J.C., 2011. Basin architecture and growth folding of the NW Zagros early foreland basin during the Late Cretaceous and early Tertiary. Journal of the Geological Society, 168: 235-250.
  • 67. Saura, E., Garcia Castellanos, D., Casciello, E., Parravano, V., Urruela, A., Vergés, J., 2015. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran Iraq). Tectonics, 34: 377-395.
  • 68. Scoffin, T.P., 1987. An Introduction to Carbonate Sediments and Rocks. Blackie, Glasgow.
  • 69. Sepehr, M., Cosgrove, J.W., 2004. Structural framework of the Zagros fold-thrust belt, Iran. Marine ad Petroleum Geology, 21: 829-843.
  • 70. Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D., Sutcliffe, O.E., 2004. Arabian plate sequence stratigraphy - revisions to SP2. GeoArabia, 9: 199-214.
  • 71. Sherkati, S., Letouzey, J., 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology, 21: 35-55.
  • 72. Sherkati, S., Letouzey, J., Frizon de Lamotte, D., 2006. Central Zagros fold thrust belt (Iran): new insights from seismic data, field observation, and sandbox modeling. Tectonics, 25: TC 4007.
  • 73. Sibley, D.F., Gregg, J.M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Research, 57: 967-975.
  • 74. Sim, M.S., Lee, Y.I., 2006. Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea) and its bearing on the regional stratigraphic correlation. Sedimentary Geology, 191: 151-169.
  • 75. Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62: 1233-1304.
  • 76. Taghavi, A.A., Mørk, A., Emadi, M.A., 2006. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Petroleum Geoscience, 12: 115-126.
  • 77. Tucker, M.E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Scientific Publications.
  • 78. Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Publications (Oxford).
  • 79. Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy, 11: 265-300.
  • 80. Veizer, J., Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the western Carpathians. Sedimentary Petrology, 43: 258-271.
  • 81. Veizer, J., Hoefs, J., 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40: 1387-1395.
  • 82. Veizer, J., Mackenzie, F.T., 2014. Evolution of sedimentary rocks. Treatise on Geochemistry, 7: 399-435.
  • 83. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Goddris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999. 87Sr/86Sr, δ18O and δ13C evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88.
  • 84. Vincent, B., Rambeau, C., Emmanuel, L., Loreau, J.P., 2006. Sedimentology and trace element geochemistry of shallow marine carbonates: an approach to paleoenvironment analysis along the Pagny-sur-Meuse section (Upper Jurassic, France). Facies, 52: 69-84.
  • 85. Vincent, B., Van Buchem, F.S.P., Bulot, L.G., Immenhauser, A., Caron, M., Baghbani, D., Huc, A.Y., 2010. Carbon isotope stratigraphy and organic matter distribution in the Aptian-Lower Albian successions of southwest Iran (Dariyan and Kazhdumi Formation). GeoArabia, 4: 139-197.
  • 86. Winefield, P.R., Nelson, C.S., Hodder, A.P.W., 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11: 19-31.
  • 87. Zhang, X., Wang, Y., Chen, X., 2000. Diagenesis and porosity of the Cambrian-Ordovician carbonate shoal facies at Yangjiaping, Shimen, Hunan. Acta Geologica Sinica, 74: 29-45.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07bf4d0c-b527-4b19-be7b-a2479c6d469d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.