Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stone columns (or granular piles, GPs) are progressively being utilized for ground improvement, mostly for pliant edifice such as road mounds, oil depot, and so forth. The present analysis is done by introducing strengthening at both the ends of GP, i.e., bottom and top end so that the bulging problem will be solved and the beneficiary effect of the bearing stratum can be utilized by the bottom strengthening feature. Analysis of a single partially strengthened, at both top and bottom, end-bearing GP is presented in this article in terms of displacement affecting component for the top (DACT) of GP, percentage load transferred to the base (PLTB) of strengthened GP, and normalized shear stress (NSS). The PLTB of the strengthened GP was found to increase considerably. The NSS was found to reduce at the top end of GP and is found to be redistributed along the length of GP.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
99--115
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, Rajasthan Technical University
autor
- Department of Civil Engineering, Rajasthan Technical University
autor
- Department of Civil Engineering, Rajasthan Technical University, Kota
Bibliografia
- [1] Madhav, M. R., Sharma, J. K., & Chandra, S. (2006). Analysis and settlement of a non-homogeneous granular pile. Indian Geotechnical Journal, 36(3), 249-271.
- [2] Mattes, N. S., & Poulos, H. G. (1969). Settlement of single compressible pile. Journal of the Soil Mechanics and Foundations Division, 95(1), 189-207.
- [3] Priebe, H. (1976). Estimating Settlements in a Gravel Column Consolidated Soil. Die Bautechnik 53, 160-163.
- [4] Ambily, A. P., & Gandhi, S. R. (2007). Behavior of stone columns based on experimental and FEM analysis. Journal of geotechnical and geoenvironmental engineering, 133(4), 405-415.
- [5] Black, J. A., Sivakumar, V., Madhav, M. R., & Hamill, G. A. (2007). Reinforced stone columns in weak deposits: laboratory model study. Journal of Geotechnical and Geoenvironmental Engineering, 133(9), 1154-1161.
- [6] Madhav, M. R., Sharma, J. K., & Sivakumar, V. (2009). Settlement of and load distribution in a granular piled raft. Geomechanics and Engineering, 1(1), 97-112.
- [7] Wang, G. (2009). Consolidation of soft clay foundations reinforced by stone columns under time-dependent loadings. Journal of geotechnical and geoenvironmental engineering, 135(12), 1922-1931.
- [8] Najjar, S. S., Sadek, S., &Maakaroun, T. (2010). Effect of sand columns on the undrained load response of soft clays. Journal of Geotechnical and Geoenvironmental Engineering, 136(9), 1263-1277.
- [9] Black, J. A., Sivakumar, V., & Bell, A. (2011). The settlement performance of stone column foundations. Géotechnique, 61(11), 909-922.
- [10] Yoo, C. (2010). Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation. Journal of Geotechnical and Geoenvironmental Engineering, 136(8), 1148-1160.
- [11] Shahu, J. T., & Reddy, Y. R. (2011). Clayey soil reinforced with stone column group: model tests and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1265-1274.
- [12] Shahu, J. T., & Reddy, Y. R. (2014). Estimating long-term settlement of floating stone column groups. Canadian geotechnical journal, 51(7), 770-781.
- [13] Etezad, M., Hanna, A. M., &Ayadat, T. (2015). Bearing capacity of a group of stone columns in soft soil. International Journal of Geomechanics, 15(2), 04014043.
- [14] Hosseinpour, I., Almeida, M. S. S., & Riccio, M. (2015). Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns. Geosynthetics International, 22(6), 428-438.
- [15] Hong, Y. S., Wu, C. S., & Yu, Y. S. (2016). Model tests on geotextile-encased granular columns under 1-g and undrained conditions. Geotextiles and Geomembranes, 44(1), 13-27.
- [16] Garg, V., & Sharma, J. K. (2019). Analysis and settlement of partially stiffened single and group of two floating granular piles. Indian Geotechnical Journal, 49(2), 191-203.
- [17] Madhav, M.R., Sharma, J.K., Garg, Vaibhaw, (2019). Stiffening effect on end bearing granular piles. A special issue Honouring Dr Bengt. Fellenius, “ Geotechnical Engineering Journal of The SEAGS and AGSSEA50, no. 3:32-40.
- [18] Mindlin, R. D. (1936). Force at a point in the interior of a semiinfinite solid. physics, 7(5), 195-202.
- [19] Mindlin, R. D. (1937). Stress system in a circular disk under radial forces, presented at the joint meeting of applied mechanics and hydraulic division of the ASME held at Cornell University, NY, pp. A115–118.
- [20] Poulos, H. G., & Mattes, N. S. (1969). The behaviour of axially loaded end-bearing piles. Geotechnique, 19(2), 285-300.
- [21] Nav, M.A., Rahnavard, R., Noorzad, A. and Napolitano, R., (2020), June. Numerical evaluation of the behavior of ordinary and reinforced stone columns. In Structures (Vol. 25, pp. 481-490). Elsevier. https://doi.org/10.1016/j.istruc.2020.03.021.
- [22] Szypcio, Z., (2000). Bearing capacity of a single column. Studia Geotechnica et Mechanica, 22(3-4), pp.41-54.
- [23] Sharma, J.K. and Gupta, P., (2018). Analysis and settlement evaluation of an end-bearing granular pile with non-linear deformation modulus. Studia Geotechnica et Mechanica, 40(3), pp.188-201. https://doi.org/10.2478/sgem-2018-0022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07bed6bb-10fc-4ddf-b36d-fb5b54d59e54