PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oznaczanie aktywności przeciwutleniającej metodami in-vitro

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Determination of antioxidant activity with in-vitro methods
Języki publikacji
PL
Abstrakty
EN
In - vitro methods of determination of the antioxidant activity of complex compounds are very interesting and not fully investigated areas of knowledge from the borderline of chemistry and biology. Methods used for determination of the activity of antioxidant complex compounds are modified due to the conditions of the experiments in which they should be carried out, e.g. reactions at physiological pH. Civilization diseases, stress related to the fast pace of life and increasing requirements of our lives cause the formation of free radicals in our body, i.e. particles characterized by a high reactivity. The methods of determination of the antioxidant activity of complexes discussed in this work apply tests carried out in laboratory conditions - in - vitro.
Rocznik
Strony
523--542
Opis fizyczny
Bibliogr. 32 poz., rys., schem.
Twórcy
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] G. Bartosz, Druga twarz tlenu. Wolne rodniki w przyrodzie, Wydawnictwo Naukowe PWN, 2013.
  • [2] L. Mello, S. Hernandez, G Marrazza, M Mascini, L. Tatsuo Kubota Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens and Bioelectronics, 2006, 21, 137.
  • [3] W. Grajek, Przeciwutleniacze w żywności, Warszawa, 2007.
  • [4] K.I. Berker, F.A. Olgun, D. Ozyurt B. Demirata, R. Apak, Modified folin - Cciocalteu antioxidant capacity assay or measuring lipophilic antioxidants, J. Agr. Food Chem. 2013, 61, 4783.
  • [5] I. Zych, A. Krzepiłko, Pomiar całkowitej zdolności antyoksydacyjnej wybranych antyoksydantów i naparów metodą redukcji rodnika DPPH, Uniwersytet Przyrodniczy w Lublinie, 2010.
  • [6] D. Ozyurt, B. Demirata, R. Apak, Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement, Talanta, 2006, 71, 115.
  • [7] M.B. Arnao, Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci. Tech., 2000, 11, 419.
  • [8] H.J. Bartoń, M. Fołta, Z. Zachwieja, Zastosowanie metod FRAP, ABTS, i DPPH w badaniu aktywności antyoksydacyjnej produktów spożywczych, Nowiny Lek, 2005, 74, 510.
  • [9] H.J. Bartoń, M. Fołta, New approach in the analysis of antioxidant activity of coloured biological samples: a modification of the method of DPPH radical scavenging. W: Molecular and Physiological Aspects of the Regulatory Processes of the Organism. Proceeding of the XV International Symposium of the Polish Network of Molecular and Cellular Biology UNESCO/PAN. Kraków 2006.
  • [10] G. Vidugiris, S. Duellman, J. Shultz, J. Vidugierene, H. Wang, J. Osterman, W. Zhou, P. Mei-Senheimer, J.J. Cali, ROS-Glo™ H202 Assay - Novel Luminescence-Based Assay for ROS Measurement [online], Promega Biosciences LLC https://cdn.technologynetworks.com/-TN/Resources/PDF/ros-glo-h2o2-assay-a-luminescent-assay-for-detection-of-reactive-oxygen-species-poster.pdf [dostępny w internecie 06.12.2018].
  • [11] https://cdn.technologynetworks.com/TN/Resources/PDF/ros-glo-h2o2-assay-a-lumines-cent-assay-for-detection-of-reactive-oxygen-species-poster.pdf [dostępny w intemecie 06.12.2019].
  • [12] M. Feelisch, J.S. Stamler: Methods in nitric oxide research, John Wiley and Sons, New York. 1996.
  • [13] K. Ciszewski, M. Macherzyński, G. Milczarek, Czujniki elektrochemiczne do oznaczania biologicznie aktywnego tlenku azotu, Wydawnictwo PP, Poznań 2003.
  • [14] H. Hong, J. Sun, W. Cai: Multimodality imaging of nitric oxide and nitric oxide synthases, Free Radic Biol. Med., 2009, 47, 684.
  • [15] E.W. Miller, C.J. Chang, Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling, Curr. Opin. Chem. Biol., 2007, 11, 620.
  • [16] W.A. Pryor, G.L. Squadrito, The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide, Am. J. Physiol., 1995, 268, L699.
  • [17] R. Kissner, T. Nauser, P. Bugnon, P.G. Lye, W.H. Koppenol, Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique and pulse radiolysis, Chem. Res. Toxicol., 1997, 10, 1285.
  • [18] S. Pfeiffer, A.C.F. Gorren, K. Schmidt, E.R Werner, B. Hansert, D.S. Bohle, B. Mayer, Metabolic fate of peroxynitrite in aqueous solution, J. Biol. Chem., 1997, 272, 3465.
  • [19] R. Radi, G. Peluffo, M.N. Alvarez, M. Naviliat, A. Cayota, Unraveling peroxynitrite formation in biological systems, Free Radic. Biol. Med., 2001, 30, 463.
  • [20] O. Augusto, M.G. Bonini, A.M. Amanso, E. Linares, C.C.X. Santos, Men-Zeles de L, Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology, Free Radic. Biol. Med., 2002, 32, 841.
  • [21] G. Ferrero-Sueta, R. Radi, Chemical biology of peroxynitrite: kinetics, diffusion and radicals, Chem. Biol., 2009, 4, 161.
  • [22] K. Setsukinai., Y. Urano, K. Kakinuma, H.J. Majima, T. Nagano, Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem., 2003, 278, 3170.
  • [23] A.M. Osman, K.K.Y. Wong, A. Fernyhough, ABTS radical-driven oxidation of polyphenols: Isolation and structural elucidation of covalent adducts, Biochem. Biophys. Res. Commun., 2006, 346, 321.
  • [24] O. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem., 2004, 37, 277.
  • [25] J.T. Mariken, J. Arts, S. Dallinga, H.P. Voss, G. Haenen, A. Bast, A new approach to assess the total antioxidant capacity using the TEAC assay, Food Chem., 2004, 88, 567.
  • [26] A. Ghiselli, M. Serafini, G. Maiani, E. Azzini, A. Ferro-Luzzi, A fluorescence-based method for measuring total plasma antioxidant capability, Free Radic. Biol. Med., 1995, 18, 29.
  • [27] I.F.F. Benzie, J.J. Strain, The Ferric Reducing Ability of Plasma (FRAP) as a measure of ’’antioxidant power”: The FRAP assay, Anal. Biochem., 1996, 239, 70.
  • [28] https://www.cellbiolabs.com/sites/default/files/STA-346-horac-assay-tít.ptf [dostępny w Internecie: 05.11.22018].
  • [29] L.M. Magalhaes, M.A. Segundo, S. Reis, J.L.F.C. Lima, Methodological aspects about in vitro evaluation of antioxidant properties, Anal. Chim. Acta, 2008, 613, 1.
  • [30] E. Alarcon, A.M. Campos, A.M. Edwards, E. Lissi, C. López-Alarcón, Antioxidant capacity of herbal infusions and tea extracts: A comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies, Food Chem., 2008, 107, 1114.
  • [31] L.C. MacDonald-Wicks, L.G. Wood, M.L. Garg, Methodology for the determination of biological antioxidant capacity in vitro: a review, J. Sci. Food Agr., 2006, 86, 2046.
  • [32] B. Ou, M. Hampsch-Woodill, R.L. Prior, Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe, J. Sci. Food Agr., 2001, 49, 4619.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07bd3cc7-6e52-4cb4-9579-5bef7e1f7655
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.