PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of air plasma spraying process parameters on the thermal barrier coating deposited with micro- and nanopowders

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the optimal conditions to deposit a thermal barrier coating using micro- and nanopowders in the air plasma spraying (APS) process. The influence of the APS process parameters on the thickness, porosity and hardness of the yttria-stabilized zirconia (YSZ; ZrO2 × 8Y2O3) coatings deposited with a single-electrode plasma gun was determined. The temperature and velocity of melted particles were determined by the DPV diagnostic system to decrease the number of experimental processes. The current and H2 flow rate were changed in this research. Metco-6700 YSZ micropowder has already been used in plasma spray physical vapor deposition. The results of this study suggest the possibility of using it for APS. The particles of this powder are characterized by high temperature (2,700°C–2,900°C) and high speed (>380 m/s). The highest thickness of the coating was obtained with 6 NLPM (normal liter per minute) H2flow and 800 A current. Difficulties were observed with the feeding of the powder particles at higher H2flow. The results showed that using APS, deposition of Metco-6609, a nanopowder normally used in suspension plasma spraying, is possible. In this research, this powder was fed using a carrier gas. The coatings were around 40 μm thick and had high porosity. The lowest porosity of the coating was obtained at a current of 600 A and H2 flow rate of 12 NLPM. In the coatings, unmelted spherical particles were also visible.
Wydawca
Rocznik
Strony
80--92
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
Bibliografia
  • [1] Dimiduk DM, Perepezko JH. Mo-Si-B alloys: developing a revolutionary turbine-engine material. MRS Bull. 2003;28(9):639–45. https://doi.org/10.1557/mrs2003.191
  • [2] Perepezko JH. The hotter the engine, the better. Science. 2009;326(5956):1068–9. https://doi.org/10.1126/science.1179327
  • [3] Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315–48. https://doi.org/10.1179/1743280413Y.0000000019
  • [4] Moskal G, Swadźba L, Mendala B, Góral M, Hetmańczyk M. Degradation of the TBC system during the static oxidation test. J Microsc. 2010;237(3):450–5. https://doi.org/10.1111/j.1365-2818.2009.03290.x
  • [5] Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: A review. J Therm Spray Technol. 2008;17(2):199–213. https://doi.org/10.1007/s11666-007-9148-y
  • [6] Rezanka S, Mack DE, Mauer G, Sebold D, Guillon O, Vaßen R. Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack. Surf Coat Technol. 2017;324:222–35. https://doi.org/10.1016/J.SURFCOAT.2017.05.003
  • [7] Rakhadilov BK, Kenesbekov AB, Kowalevski P, Ocheredko IA, Sagdoldina ZB. Development of air-plasma technology for hardening cutting tools by applying wear-resistant coatings. News Natl Acad Sci Repub Kazakhstan, Ser Geol Tech Sci. 2020;3(441):54–62. https://doi.org/10.32014/2020.2518-170X.54
  • [8] Bernard B, Quet A, Bianchi L, Joulia A, Malié A, Schick V, et al. Thermal insulation properties of YSZ coatings: Suspension Plasma Spraying (SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS). Surf Coat Technol. 2017;318:122–8. https://doi.org/10.1016/j.surfcoat.2016.06.010
  • [9] Goral M, Kotowski S, Sieniawski J. The technology of plasma spray physical vapour deposition. High Temp Mater Process. 2013;32(1):33–9. https://doi.org/10.1515/htmp-2012-0051
  • [10] Zhou D, Guillon O, Vaßen R. Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings. 2017;7(8):120–37. https://doi.org/10.3390/coatings7080120
  • [11] von Niessen K, Gindrat M. Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. J Therm Spray Technol. 2011;20(4):736–43. https://doi.org/10.1007/s11666-011-9654-9
  • [12] Sokołowski P, Nylen P, Musalek R, Łatka L, Kozerski S, Dietrich D, et al. The microstructural studies of suspension plasma sprayed zirconia coatings with the use of high-energy plasma torches. Surf Coat Technol. 2017;318:250–61. https://doi.org/10.1016/j.surfcoat.2017.03.025
  • [13] Fauchais P, Vardelle M, Goutier S, Vardelle A. Key challenges and opportunities in suspension and solution plasma spraying. Plasma Chem Plasma Process. 2014;35(3):511–25. https://doi.org/10.1007/s11090-014-9594-5
  • [14] Góral M, Kubaszek T, Kotowski S, Sieniawski J, Dudek S. Influence of deposition parameters on structure of TBCS deposited by PS-PVD method. Solid State Phenom. 2015;227:369–72. https://doi.org/10.4028/www.scientific.net/SSP.227.369
  • [15] Góral M, Kubaszek T. The influence of process parameters on structure of ceramic coatings deposited by PS-PVD method. Solid State Phenom. 2017;267:243–7. https://doi.org/10.4028/www.scientific.net/SSP.267.243
  • [16] Bacciochini A, Ben-Ettouil F, Brousse E, Ilavsky J, Montavon G, Denoirjean A, et al. Quantification of void networks of as-sprayed and annealed nanostructured yttria-stabilized zirconia (YSZ) deposits manufactured by suspension plasma spraying. Surf Coatings Technol. 2010;205(3):683–9. https://doi.org/10.1016/j.surfcoat.2010.06.013
  • [17] Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Ténèze K. Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol. 2008;17(1):31–59. https://doi.org/10.1007/s11666-007-9152-2
  • [18] Łatka L, Cattini A, Pawłowski L, Valette S, Pateyron B, Lecompte JP, et al. Thermal diffusivity and conductivity of yttria stabilized zirconia coatings obtained by suspension plasma spraying. Surf Coat Technol. 2012;208:87–91. https://doi.org/10.1016/j.surfcoat.2012.08.014
  • [19] Bernard B, Schick V, Remy B, Quet A, Bianchi L. High temperature thermal properties of columnar yttria stabilized zirconia thermal barrier coating performed by suspension plasma spraying. J Phys Conf Ser. 2016;745:1–8. https://doi.org/10.1088/1742-6596/745/3/032012
  • [20] Algenaid W, Ganvir A, Calinas RF, Varghese J, Rajulapati KV, Joshi S. Influence of microstructure on the erosion behaviour of suspension plasma sprayed thermal barrier coatings. Surf Coat Technol. 2019;375:86–99. https://doi.org/10.1016/j.surfcoat.2019.06.075
  • [21] Hospach A, Mauer G, Vaen R, Stöver D. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol. 2011;20(1–2):116–20. https://doi.org/10.1007/s11666-010-9549-1
  • [22] Dwivedi G, Viswanathan V, Sampath S, Shyam A, Lara-Curzio E. Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging. J Am Ceram Soc. 2014;97(9):2736–44. https://doi.org/10.1111/jace.13021
  • [23] Huang J, Wang W, Lu X, Liu S, Li C. Influence of lamellar interface morphology on cracking resistance of plasma-sprayed YSZ coatings. Coatings. 2018;8(5):1–15. https://doi.org/10.3390/coatings8050187
  • [24] Gao Y, Zhao Y, Yang D, Gao J. A novel plasma-sprayed nanostructured coating with agglomerated-unsintered feedstock. J Therm Spray Technol. 2016;25(1–2):291–300. https://doi.org/10.1007/s11666-015-0340-1
  • [25] Kubaszek T, Góral M. Influence of air plasma spraying process parameters on ceramic layer in thermal barrier coatings. Solid State Phenom. 2017;267:207–11. https://doi.org/10.4028/www.scientific.net/SSP.267.207
  • [26] Chyrkin A, Gunduz KO, Fedorova I, Sattari M, Visibile A, Halvarsson M, et al. High-temperature oxidation behavior of additively manufactured IN625: Effect of microstructure and grain size. Corros Sci. 2022;205(December 2021):110382. https://doi.org/10.1016/j.corsci.2022.110382
  • [27] Aranke O, Gupta M, Markocsan N. Microstructural evolution and sintering of suspension plasma-sprayed columnar thermal barrier coatings. J Therm Spray Tech. 2019;28(1–2):198–211. https://doi.org/10.1007/s11666-018-0778-z
  • [28] Oerlikon Metco. Metco 6609 – material product data sheet Internet.. cited 2022 Nov 14. https://www.oerlikon.com/ecoma/files/DSM-0406.2_ZrO2_8Y2O3_Suspensions.pdf (accessed 2022-11-14)
  • [29] Mauer G, Vaßen R. Plasma Spray-PVD: plasma characteristics and impact on coating properties. J Phys Conf Ser. 2012;406(1):012005. https://doi.org/10.1088/1742-6596/406/1/012005
  • [30] Oerlikon Metco. Metco 204NS – material product data sheet Internet.. cited 2022 Nov 14. https://www.oerlikon.com/ecoma/files/DSM-0242.5_8YO_ZrO_HOSP.pdf (accessed 2022-11-14)
  • [31] Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals. Boston: Springer; 2014. https://doi.org/10.1007/978-0-387-68991-3_1
  • [32] Nicoll AR, Gruner H, Prince R, Wuest G. Thermal spray coatings for high temperature protection. Surf Eng. 1985;1(1):59–71. https://doi.org/10.1179/sur.1985.1.1.59
  • [33] Liu SH, Trelles JP, Murphy AB, He WT, Shi J, Li S, et al. Low-pressure plasma-induced physical vapor deposition of advanced thermal barrier coatings: microstructures, modelling and mechanisms. Mater Today Phys. 2021;21:100481. https://doi.org/10.1016/j.mtphys.2021.100481
  • [34] Zhang B, Wei L, Guo H, Xu H. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition. Ceram Int. 2017;43(15):12920–9. https://doi.org/10.1016/j.ceramint.2017.06.190
  • [35] Seshadri RC, Dwivedi G, Viswanathan V, Sampath S. Characterizing suspension plasma spray coating formation dynamics through curvature measurements. J Therm Spray Technol. 2016;25(8):1666–83. https://doi.org/10.1007/s11666-016-0460-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07b76bde-5a3f-4cfb-8ec6-93a03035e1aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.