PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rayleigh Waves Transformation in Liquefying Water-saturated Sands

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behaviour of a water-saturated sand deposit subjected to dynamic loads induced by the propagation of Rayleigh surface waves is analysed. Cyclic shearing of the saturated sand matrix due to ground motions results in the development of excess pore pressures in the soil and its subsequent liquefaction. The phenomena of pore pressure generation and soil liquefaction are investigated within the framework of a compaction theory for saturated granular media. The results of calculations, carried out by a finite-element method, illustrate the evolution of pore pressures and the development of liquefaction zones in the soil, and show the variation of surface wave parameters with the progressive degradation of the strength of the subsoil.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80-328 Gdańsk, Poland
Bibliografia
  • Achenbach J. D. (1973) Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
  • Bažant Z. P., Krizek R. J. and Shieh C. L. (1983) Histeretic endochronic theory for sand, Proc. ASCE, J. Eng. Mech., 109 (4), 1073–1095.
  • Biot M. A. (1955) Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (2), 182–185.
  • Bowen R. M. (1982) Compressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 20 (6), 697–735.
  • Finn W. D. L., Lee K. W. and Martin G. R. (1977) An effective stress model for liquefaction, Proc. ASCE, J. Geotech. Eng. Div., 103 (6), 517–533.
  • Finn W. D. L., Pickering D. J. and Bransby P. L. (1971) Sand liquefaction in triaxial and simple shear tests, Proc. ASCE, J. Soil Mech. Found. Div., 97 (4), 639–659.
  • Gazetas G. and Yegian M. K. (1979) Shear and Rayleigh waves in soil mechanics, Proc. ASCE, J. Geotech. Eng. Div., 105, 1455–1470.
  • Hardin R. and Drnevich V. P. (1972) Shear modulus and damping in soils: measurement and parameter effects, Proc. ASCE, J. Soil Mech. Found. Div., 98 (6), 603–624.
  • Lysmer J. (1970) Lumped mass method for Rayleigh waves, Bull. Seism. Soc. Am., 60 (1), 89–104.
  • Martin G. R., Finn W. D. L. and Seed H. B. (1975) Fundamentals of liquefaction under cyclic loading, Proc. ASCE, J. Geotech. Eng. Div., 101, 423–438.
  • Morland L. W. and Sawicki A. (1983) A mixture model for the compaction of saturated sand, Mech. Mater., 2 (3), 203–216.
  • Morland L. W. and Sawicki A. (1985) A model for compaction and shear hysteresis in saturated granular materials, J. Mech. Phys. Solids, 33, 1–24.
  • Mróz Z., Norris V. A. and Zienkiewicz O. C. (1981) An anisotropic, critical state model for soils subject to cyclic loading, G`eotechnique, 31 (4), 451–469.
  • Sawicki A. (1987) An engineering model for compaction of sand under cyclic loading, Eng. Trans., 35 (4), 677–693.
  • Sawicki A. (1991) Mechanics of Soils under Cyclic Loading (in Polish), IBW PAN Publishing House, Gdansk.
  • Sawicki A. (2014) The Puzzle of Soil Liquefaction, IBW PAN Publishing House, Gdańsk.
  • Sawicki A. and Mierczyński J. (2006) Developments in modeling liquefaction of granular soils, caused by cyclic loads, Appl. Mech. Rev., 59 (2), 91–106.
  • Sawicki A. and Morland L. W. (1985) Pore pressure generation in a saturated sand layer subjected to a cyclic horizontal acceleration at it base, J. Mech, Phys. Solids, 33 (6), 545–559.
  • Sawicki A. and Staroszczyk R. (1995) Development of ground liquefaction due to surface waves, Arch. Mech., 47 (3), 557–576.
  • Seed H. B. and Lee K. L. (1966) Liquefaction of saturated sands during cyclic loading, Proc. ASCE, J. Soil Mech. Found. Div., 92 (6), 105–134.
  • Seed H. B. and Peacock W. H. (1971) Test procedures for measuring soil liquefaction characteristics, Proc. ASCE, J. Soil Mech. Found. Div., 97 (8), 1099–1119.
  • Staroszczyk R. (1996) Pore pressure generation and liquefaction in saturated sands due to the propagation of surface waves, Acta Geophys. Pol., 44 (2), 195–218.
  • Staroszczyk R. (1998) Love wave-induced liquefaction in a saturated sand layer, J. Theor. Appl. Mech., 36 (3), 723–744.
  • Valanis K. C. and Peters J. F. (1991) An endochronic plasticity theory with shear-volumetric coupling, Int. J. Numer. Anal. Meth. Geomech., 15 (2), 77–102, DOI: 10.1002/nag.1610150202.
  • Verruijt A. (1969) Elastic storage of aquifers, in: Flow through Porous Media (ed. R. J. M. De Wiest), chap. 8, Academic Press, New York, pp. 331–376.
  • Zienkiewicz O. C., Taylor R. L. and Zhu J. Z. (2005) The Finite Element Method: Its Basis and Fundamentals, Elsevier Butterworth-Heinemann, Amsterdam, 6th edn.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07b13c64-fd6a-432f-91d5-a93f0133f39d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.