PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of the corrosion resistance for stainless steel 316 by applying laser shock peening

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper focuses on enhancing the surface characteristics of the 316 stainless steel (SS316) alloy, including roughness, microhardness, and corrosion resistance. Where the application of ND-YAG laser technology, a highly relevant and timely area, was investigated deeply. The Q-switching Nd: YAG Laser was used with varying laser energy levels within the context of the laser shock peening (LSP) technique. The corrosion resistance of the 316 ss alloy is evaluated in a corrosive environment of 500 mL of saliva (with a pH of 5.6) through electrochemical corrosion testing. Corrosion rate was determined based on the analysis of polarization curves. The outcomes of this research reveal that as the laser energy was increased, there was a noticeable enhancement in the mechanical properties of the 316 ss alloy’s surface. Importantly, the corrosion rate experiences a significant reduction, decreasing from 4.94 mm/yr to 3.59 mm/yr following laser shock peening (LSP) application.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 17 poz., tab., wz.
Twórcy
  • College of Science, Diyala University, Iraq
autor
  • Physics Dept, College of Science, Diyala University, Iraq
autor
  • Laser and Optoelectronic Eng. Dept, University of Technology, Iraq
  • Department of Energy Engineering, College of Engineering, University of Baghdad, Iraq
  • Department of Mechanics, Al-Farabi Kazakh National University Almaty, Kazakhstan
  • Mechanical Engineering Department, College of Engineering, Gulf University Sanad, Bahrain
Bibliografia
  • 1. Wang, Y., Wang, W., Liu, Y., Zhong, L. & Wang, J. (2011). Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode. J. Corros. Sci., 53(9), 2963–2968. DOI: 10.1016/j.corsci.2011.05.051.
  • 2. Koushik, B.G., Van den Steen, N., Mamme, M.H., Van Ingelgem, Y. & Terryn, H. (2021). Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. J. Mater. Sci. Technol. 62, 254–267. DOI: 10.1016/j.jmst.2020.04.061.
  • 3. Guo, M., Tang, J., Peng, C., Li, X., Wang, C., Pan, C. & Wang, Z. (2022). Effects of salts and its mixing ratio on the corrosion behavior of 316 stainless steel exposed to a simulated salt-lake atmospheric environment. Mater. Chem. Phys. 276, 125380. DOI: 10.1016/j.matchemphys.2021.125380.
  • 4. Grum, J. (2007). Comparison of Different Techniques of Laser Surface Hardening. J. Achiev. in Mater. Manufac. Engin. 24(1), 17–25.
  • 5. Xiong, Y., He, T., Guo, Z., He, H., Ren, F. & Volinsky, A.A. (2013). Effects of laser shock processing on surface microstructure and mechanical properties of ultrafine-grained high carbon steel. Mater. Sci. Engin: A, 570, 82–86. DOI: 10.1016/j. msea.2013.01.068.
  • 6. Judran, A.K., Kadhim, S.M. & Elah, H.A. (2018). Enhancement of the corrosion resistance for 6009 aluminum alloy by laser treatment. Kufa J. Eng. 9, 201–214. DOI: 10.30572/2018/kje/090215.
  • 7. Maaß, P. & Peißker, P. (2011). Handbook of hot-dip galvanization (13 Volume). John Wiley & Sons.(Eds.), Corrossion Handbook.
  • 8. Khalil, K.S. (2014). Corrosion Inhibition Measurement of Zinc in Acidic Media by Different Techniques. Unpublished M.Sc. Thesis, University of Baghdad, Baghdad, Iraq.
  • 9. Davis, J.R. (Ed.). (2001). Surface Engineering For Corrosion And Wear Resistance (1st Ed). USA, ASM international.
  • 10. Akchurin, A., Bosman, R., Lugt, P.M. & van Drogen, M. (2016). Analysis of wear particles formed in boundary-lubricated sliding contacts. Tribology letters, 63, 1–14. DOI: 10.1007/s11249-016-0701-z.
  • 11. Zhang, L., Zhang, Y.K., Lu, J.Z., Dai, F.Z., Feng, A.X., Luo, K.Y., J.S. Zhong, Q.W., Wang, M. & Qi, H. (2013). Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion. J. Corros. Sci. 66, 5–13. DOI: 10.1016/j.corsci.2012.08.034.
  • 12. Sakthivel, N. (2018). Analysis of Wear and Corrosion Properties of 316 L Stainless Steel Additively Manufactured Using Laser Engineered Net Shaping, Doctoral Dissertation, Oklahoma State University, USA.
  • 13. Yan, X., Wang, F., Deng, L., Zhang, C., Lu, Y., Nastasi, M., & Cui, B. (2018). Effect of laser shock peening on the microstructures and properties of oxide-dispersion-strengthened austenitic steels. Adv. Engin. Mater. 20(3), 1700641. DOI: 10.1002/adem.201700641.
  • 14. Pan, X., Gu, Z., Qiu, H., Feng, A. & Li, J. (2022). Study of the mechanical properties and microstructural response with laser shock peening on 40CrMo steel. Metals, 12(6), 1034.
  • 15. Lu, J., Qi, H., Luo, K., Luo, M. & Cheng, X. (2014).”Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies,” Corros. Sci. 80, 53–59. DOI: 10.3390/met12061034.
  • 16. Liu, D., Shi, Y., Liu, J. & Wen, L. (2019). Effect of laser shock peening on corrosion resistance of 316L stainless steel laser welded joint. J. Surf. Coat. Technol. 378, 124824. DOI: 10.1016/j.surfcoat.2019.07.048.
  • 17. Guan, L., Ye, Z.X., Yang, X.Y., Cai, J.M., Li, Y., Li, Y. & Wang, G. (2021). Pitting resistance of 316 stainless steel after laser shock peening: Determinants of microstructural and mechanical modifications. J. Mater. Proces. Technol. 294, 117091. DOI: 10.1016/j.jmatprotec.2021.117091.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07af1300-aa52-4f8b-a5ff-4f143a566ceb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.