Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we investigate the global behavior of the following non-linear difference equation ...[wzór] where the coefficients α, β, y, p Є (0,∞) and σ, τ Є N and the initial conditions x-x, x0 x-ω are arbitrary positive real numbers, where ω = max {σ, τ}.
Czasopismo
Rocznik
Tom
Strony
137--147
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Mathematics Department Faculty of Science Zagazig University Zagazig, Egypt
autor
- Mathematics Department Faculty of Science Zagazig University Zagazig, Egypt
- Mathematics Department Faculty of Science and Arts Jazan University Farasan, Jazan, Kingdom of Saudi Arabia
Bibliografia
- [1] Aboutaleb M.T., El-Sayed M.A., Hamza A.E., Stability of the recursive sequence xn+1= (α- βxn ) / (у + xn-1), J. Math. Anal. Appl., 261(2001), 126-133.
- [2] Agarwal R., Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker Inc, New York, 1992.
- [3] Elabbasy E.M., El-Metwally H., Elsayed E.M., On the difference equation xn+1= (axn-1+ βxn-k) / (Axn-l+ Bxn-k), Acta Mathematica Vietnamica, 33(1)(2008), 85-94.
- [4] Elabbasy E.M., El-Metwally H., Elsayed E.M., On the difference equation xn+1= axn- bxn / (cxn - dxn-1) Advances in Difference Equations, Volume 2006, Article ID 82579, pages 1-10, doi: 10.1155/2006/82579.
- [5] El- Metwally H., Grove E.A., Ladas G., A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245(2000), 161-170.
- [6] El-Morshedy H.A., New explicit global asymptotic stability criteria for higher order difference equations, J. Math. Anal. Appl., 336(2007), 262-276.
- [7] Kocic V.L., Ladas G., Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
- [8] Grove E.A., Ladas G., Periodicities in nonlinear difference equations, Vol.4, Chapman & Hall / CRC, 2005.
- [9] EL-Owaidy H.M., Ahmed A.M., Youssef A.M., The dynamics of the recursive sequence xn+1= …[wzór] , Appl. Math. Letters, 18(2005), 1013-1018.
- [10] Kulenovic M.R.S., Ladas G., Dynamics of second order rational difference equations with open problems and conjectures, Chapman & Hall / CRC, Florida, 2001.
- [11] Kuruklis S.A., The asymptotic stability of xn+1- axn + bxn-k = 0, J. Math. Anal. Appl., 188(1994), 719-731.
- [12] Saleh M., Abu-Baha S., Dynamics of a higher order rational difference equation, Appl. Math. Comput., 181(2006), 84-102.
- [13] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = (D + axn + βxn-1 + yxn-2)/(Axn + Bxn-1 + Cxn-2), Comm. Appl. Nonlinear Analysis, 12(2005), 15-28.
- [14] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = (αxn + βxn-1 + yxn-2 + δxn-3) / (Axn + Bxn-1 + Cxn-2 + Dxn-3), J. Appl. Math. & Computing, 22(2006), 247-262.
- [15] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = …[wzór], Mathematica Bohemica, 133(3)(2008), 225-239.
- [16] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = …[wzór],Int. J. Math. & Math. Sci, Volume 2007, Article ID 23618, 12 pages, doi: 10.1155/2007/23618.
- [17] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = axn- bxn / (cxn – dxn-k), Comm. Appl. Nonlinear Analysis, 15(2008), 47-57.
- [18] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = (α+βxn-k) / (y-xn), J. Appl. Math. & Computing, 31(2009), 229-237.
- [19] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = Axn + (βxn + yxn-k)/(Cxn + Dxn-k), Comm. Appl. Nonlinear Analysis, 16(2009), 91-106.
- [20] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = yxn-k + (axn + bxn-k) / (cxn – dxn-k), Bulletin of the Iranian Math- ematical Society, 36(2010), 103-115.
- [21] Zayed E.M.E., El-Moneam M.A., On the rational recursive two sequences xn+1 = axn-k + bxn-k/(cxn + δdxn-k), Acta Math. Vietnamica, 35(2010), 355-369.
- [22] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1= Axn + Bxn-k + (βxn + yxn-k)/(Cxn + Dxn-k), Acta Appl. Math., 111(2010), 287-301.
- [23] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1 = (α0xn + α1xn-l + α2xn-k) / (β0xn + β1xn-l + β2n-k), Mathematica Bohemica, 135(2010), 319-336.
- [24] Zayed E.M.E., El-Moneam M.A., On the rational recursive sequence xn+1= (A + αoxn + α1xn-σ)/(B + β0xn + β1xn-τ), Acta Math. Vietnamica, 36(2011), 73-87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07ad7b08-e21a-4bc5-a100-69a919a109c8