PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trajectory Planning with Negotiation for Maritime Collision Avoidance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of vessel collisions or near-collision situations on sea, often caused by human error due to incomplete or overwhelming information, is becoming more and more important with rising maritime traffic. Approaches to supply navigators and Vessel Traffic Services with expert knowledge and suggest trajectories for all vessels to avoid collisions, are often aimed at situations where a single planner guides all vessels with perfect information. In contrast, we suggest a two-part procedure which plans trajectories using a specialised A* and negotiates trajectories until a solution is found, which is acceptable for all vessels. The solution obeys collision avoidance rules, includes a dynamic model of all vessels and negotiates trajectories to optimise globally without a global planner and extensive information disclosure. The procedure combines all components necessary to solve a multi-vessel encounter and is tested currently in simulation and on several test beds. The first results show a fast converging optimisation process which after a few negotiation rounds already produce feasible, collision free trajectories.
Twórcy
autor
  • University of Oldenburg, Germany
autor
  • University of Oldenburg, Germany
autor
  • University of Applied Sciences Konstanz, Germany
autor
  • University of Applied Sciences Konstanz, Germany
Bibliografia
  • 1 Blaich, M., Rosenfelder M., Schuster M., Bittel, O. & Reuter J. 2012a. Extended Grid Based Collision Avoidance Considering COLREGs for Vessels. In Proc. of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC)
  • 2 Blaich, M., Rosenfelder M., Schuster M., Bittel, O. & Reuter J. 2012b. Fast Grid Based Collision Avoidance for Vessels using A * Search Algorithm. In Proc. of the 17th International Conference on Methods and Models in Automation and Robotics (MMAR)
  • 3 Davis, P. V., Dove, M. J. & Stockel, C. T. 1982. A computer simulation of multi‐ship encounters. Journal of Navigation 35(2):347‐352
  • 4 Heiskanen, P. 1999. Decentralized method for computing Pareto solutions in multiparty negotiations. European Journal of Operational Research 117(3), 578‐590
  • 5 Inalhan, G., Stipanovic, D. M., & Tomlin, C. J. 2002. Decentralized optimization, with application to multiple aircraft coordination. Proceedings of the 41st IEEE Conference on Decision and Control 1147‐1155
  • 6 Li, X. & Jilkov, V. 2003. Survey of maneuvering target tracking. Part I: Dynamic models. In IEEE Transactions on, Aerospace and Electronic Systems 39(4)
  • 7 Mu, L., Kumar, R., & Prinz, A. 2011. An integrated wireless communication architecture for maritime sector. Multiple Access Communications (pp. 193‐205). Springer Berlin Heidelberg
  • 8 Muthoo, A. 1999. Bargaining theory with applications. Cambridge University Press
  • 9 Schuster, M., Blaich, M. & Reuter J. 2014. Collision Avoidance for Vessels using a Low‐Cost Radar Sensor. In Proc. of the 19th IFAC World Congress
  • 10 Smierzchalski, R. 1999. Evolutionary trajectory planning of ships in navigation traffic areas. Journal of Marine Science and Technology 4(1): 1‐6
  • 11 Szlapczynski, R. 2011. Evolutionary Sets Of Safe Ship Trajectories: A New Approach To Collision Avoidance. Journal of Navigation 64(1): 169‐181
  • 12 Szlapczynski, R. 2012. Evolutionary approach to ship ’ s trajectory planning within Traffic Separation Schemes. Polish Maritime Research 19(1): 11‐20
  • 13 Szlapczynski, R. 2013. Evolutionary Sets of Safe Ship Trajectories Within Traffic Separation Schemes. Journal of Navigation 66(1): 65‐81
  • 14 Szlapczynski, R. 2015 Evolutionary Planning of Safe Ship Tracks in Restricted Visibility. Journal of Navigation 68(1): 39‐51
  • 15 Szlapczynski, R. & Szlapczynska J. 2012a. On evolutionary computing in multi‐ship trajectory planning. Applied Intelligence 37(2): 155‐174
  • 16 Szlapczynski, R. & Szlapczynska J. 2012b. Evolutionary Sets of Safe Ship Trajectories: Evaluation of Individuals. International Journal on Marine Navigation and Safety of Sea Transportation (TansNav) 6(5): 345‐353
  • 17 Waslander, S. L. 2007. Multi‐agent systems design for aerospace applications (Doctoral dissertation, Stanford University
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07a26151-2925-4741-a7e2-31ed40f5a1d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.