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Abstract

Workers in labor-intensive units, in general, maximize their earnings by subjecting them-
selves to high risk of occupational health hazards (RoOHH) due to economic reasons. We
present an intelligent system integrating artificial neural network (ANN) and evolution-
ary multiobjective optimisation (EMO) to tackle this problem, which has received scant
attention in the literature. A brick manufacturing unit in India is chosen as case study to
demonstrate the working of proposed system. Firing is assessed to be the most severe job
among others using an interview method. A job-combination approach is devised which
allows firing workers to perform another job (loading/covering/molding) along with fir-
ing. The second job not only reduces their exposure to high temperature zone but also
helps to compensate for reduced earnings. RoOHH is measured using a risk assessment
score (RAS). ANN models the psychological responses of workers in terms of RAS, and
facilitates the evaluation of a fitness function of EMO. EMO searches for optimal work
schedules in a job-combination to minimize RAS and maximize earnings simultaneously.

1 Introduction

Brick manufacturing (BM) in India is labor inten-
sive and comprises the following major jobs −
molding the raw bricks, loading molded bricks
to kiln using a pushcart or a pony-cart, stacking
molded bricks into the kiln in a particular way,
spreading clay sand over the stacks uniformly for
superior baking of bricks, firing the kiln that in-
cludes pouring the coal into the kiln from the cov-
ered holes at the top of the kiln at required intervals
and monitoring the fire, and finally unloading the
baked bricks from the kiln; we term these processes
respectively as molding, loading, stacking, cover-
ing, firing and unloading, for ready references in
this paper. Firing, the most severe job, involves
undue exposure of workers to excessive heat. Each
job in a BM unit has its specific earning. Though
high earning jobs are usually tedious to perform,
yet workers prefer doing such jobs for long hours
due to reasons already mentioned, which in turn

create health problems. Combining jobs is found to
be a way of reducing RoOHH and yet maintaining
the good earnings [25]. We, therefore, implement a
job-combination approach in the BM unit wherein
the firing workers perform another job along with
firing job within their prescribed working hours
(WH) thereby reducing their exposure to high tem-
perature zone while maintaining their earnings to a
satisfactory level. Similar to firing workers, mold-
ing and other workers go for firing work partially in
a job-combination approach which would increase
their overall earnings but at the cost of increase
in risk of heat stress, however, the risk of mus-
culoskeletal disorder, a recognized OHH in such
activities, would reduce to an extent. Firing, mold-
ing, and covering jobs require special skills whereas
loading is a low skilled job. Therefore it is found
essential to train a set of workers to perform differ-
ent jobs with reasonable skills while implementing
job-combination approach.
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The temperature inside a brick kiln is about
1200C. Firing workers monitor the fire from the
roof of the kiln through a number of covered holes.
They pour the coal inside the kiln by opening the
holes partially as and when required to ensure the
proper baking of bricks. They have high risk of
heat stress due to their exposure to high temper-
ature zone. Further if bricks are under-baked or
over-baked, the chance of rejection of the whole
lot is very high. It further increases the stress level
of firing workers. Current guidelines define work-
ing environment that causes an increase above 38C
(heat stress) as potentially hazardous [1]. How-
ever, the effectiveness of these guidelines is lim-
ited by the individual variation among employee
and variation in work practices [17]. It is also es-
sential to assess the thermal environment of a work-
place with good reliability to avoid the underestima-
tion of its dangerousness [5]. Hot conditions give
rise to physiological heat strain [3], and cognitive
decrements [11, 14, 18]. In general, heat stress de-
creases workers’ performance significantly [19]. In
the present work, we assess RoOHH in terms of risk
assessment score (RAS) of workers for a given job-
combination. Risk assessment has been a pertinent
area in occupational health and safety [22 , 24]. We
make the following observations based on an initial
survey using interview method: (1) the workers, in
general, are found to maximize their earnings by
subjecting themselves to extreme work conditions
due to economic reasons, and hence are exposed
to greater RoOHH; (2) three factors are identified
to be influencing RAS of a given job, viz. num-
ber of working hours (WH), duration of a rest break
(RB), and number of rest breaks (NRB). Many stud-
ies have shown the dismal impact of long working
hours on workers’ performance [9, 15]. The influ-
ence of rest breaks have been investigated in reduc-
ing the amount of spinal shrinkage while establish-
ing a relationship between duration and frequency
of rest intervals (referred to as RB and NRB respec-
tively in this paper) with spinal shrinkage [20]. The
importance of frequent, brief rest breaks (5 min rest
break to every working hour) has been shown in im-
proving symptoms for workers engaged in strenu-
ous work tasks [12].

Artificial neural networks have gained ample
footing in intelligent decision making systems. The
data driven approach of the ANNs enables them
to behave as model free estimators, i.e., they cap-

ture and model complex input-output relationships
even without the help of a mathematical model. We,
therefore, utilize the function approximation capa-
bility of ANN using back propagation neural net-
works in the evaluation of RAS. A back propagation
neural network (BPNN) is a multiple layer network
with an input layer, output layer and some hidden
layers between input and output layers [13]. Its
learning procedure is based on gradient search with
least sum squared optimality criterion. Calculation
of the gradient is done by partial derivative of sum
squared error with respect to weights. After hav-
ing the initial weights specified randomly and pre-
sented the inputs to the neural network, each neu-
ron currently sum outputs from all neurons in the
preceding layer. The sums and activation (output)
values for each neuron in each layer are propagated
forward through the entire network to compute an
actual output and error of each neuron in the out-
put layer. The error for each neuron is computed as
the difference between actual output and its corre-
sponding target output, and then the partial deriva-
tive of sum-squared errors of all the neurons in the
output layer is propagated back through the entire
network and the weights are updated. In course
of the back propagation learning, a gradient search
procedure is used to find connection weights of the
network, but it tends to trap itself into the local min-
ima. The local minima may be avoided by adjusting
value of the momentum. This algorithm can be ex-
pressed succinctly in the form of a pseudo-code as
below.

1. Pick a rate parameter R.

2. Until performance is satisfactory

For each sample input, compute the resulting
output. Compute β for nodes in the output layer
using

β = DZ − OZ

where D represents the desired output and O repre-
sents the actual output of the neuron. Compute β
for all other nodes using

β j = ∑kw j→kOk (1− Ok)βk

Compute weight changes for all weights using

△wi→ j = rOiO j (1− O j)β j

Add up the weight changes for all sample inputs and
change the weights.
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The algorithm applies Levenberg-Marquardt
(LM) learning rule, which uses an approximation
of the Newton’s method to get better performance.
This technique is relatively faster as demonstrated
by [23, 26] while modeling input/output relation-
ships of complex processes using this algorithm.
LM approximation update rule is:

△W = (JT J+ µI)
−1

JTe

where J is the Jacobean matrix of derivatives of
each error to each weight, is a scalar and e is
an error vector. If the scalar is very large, the
above expression approximates the Gradient De-
scent method while it is small the above expression
becomes the Gauss-Newton method. The Gauss-
Newton method is faster and more accurate near
error minima. Hence, the aim is to shift towards
the Gauss-Newton as quickly as possible. Thus is
decreased after each successful step and increased
only when step increases the error. Architecture of
ANN to evaluate RAS is shown in Fig. 1.

Figure 1. BPNN architecture to evaluate RAS

RAS-earning tradeoff (RET) belongs to a class
of multiobjective optimization (MOO) problem
[27]. There is no single optimum solution in MOO
rather there exists a number of solutions which are
all optimal − Pareto-optimal solutions − optimal
RET solutions in occupational health literature. The
curve joining nondominated RET solution points is
termed as RET profile. A nondominated RET so-
lution point (SP) represents a point in the feasible
region that is not dominated by any other point in
the region (it may be noted that if a solution point
S1 is better than S2 in terms of all objective val-
ues, we say that S1 dominates S2).The tradeoff be-

tween RAS and earnings gives workers wide op-
portunities to work out the best schedule to reduce
RoOHH while maintaining their required earnings,
and therefore RET analysis is of considerable im-
portance from the view points of both − workers
and managers. There are six factors in a given job-
combination which assume discrete values in real-
life situations; therefore, the problem being tackled
in this work, i.e., searching for optimal RET profile
for each job-combination, is a combinatorial mul-
tiobjective optimization problem − NSGA-II (non-
dominated sorting genetic algorithm-II), an EMO
technique, solves this problem. MOO is a field
reasonably explored by researchers in recent years
since 1990 − as a result diverse techniques have
been developed over the years [10]. Most of these
techniques elude the complexities involved in MOO
and usually transform multiobjective problem into
a single objective problem by employing some user
defined function. Since MOO involves determin-
ing Pareto-optimal solutions, therefore, it is hard to
compare the results of various solution techniques
of MOO, as it is the decision-maker who decides
the ‘best solution’ out of all optimal solutions per-
taining to a specific scenario [4]. Evolutionary al-
gorithms (EAs) are meta-heuristics that are able to
search large regions of the solution’s space with-
out being trapped in local optima [8]. Some well-
known meta heuristics are genetic algorithm, sim-
ulated annealing, and tabu search. A genetic algo-
rithm (GA) is an evolutionary algorithm [21], and is
based on the mechanics of natural selection and ge-
netics to search through decision space for optimal
solutions [16]. A string in a genetic algorithm rep-
resents a set of decisions (chromosome combina-
tion), a potential solution to a problem. Each string
is evaluated on its performance with respect to the
fitness function (objective function). The ones with
better performance (fitness value) are more likely
to survive than the ones with worse performance.
Then the genetic information is exchanged between
strings using crossover and perturbed by mutation.
The result is a new generation with (usually) better
survival abilities. This process is repeated until the
strings in the new generation are identical, or cer-
tain termination conditions are met. A genetic al-
gorithm processes a population of solutions in each
iteration of its search procedure instead of a sin-
gle solution, and therefore, the outcome of a GA is
also a population of solutions. This unique feature



80 Yogesh K Anand et al.

of GA makes it a true multiobjective optimization
technique and that is how genetic algorithms tran-
scend classical search and optimization techniques.
EMO techniques encompass different versions of
multiobjective GAs including NSGA-II, which has
been successfully employed to solve many MOO
problems in science and engineering [6].

2 Methodology

Ten male workers (mean age: 24 years, average
height: 165 cm, average weight: 53 Kg, average job
experience: 4 years) are taken for the study. None
of these workers report a history of chronic health
problems. Specifically, these workers are trained
to perform firing job along with one of the follow-
ing three jobs – molding, loading, and covering,
with predefined working hours (WH) distribution -
resulting in the following three job-combinations -
firing-molding, firing-loading, and firing- covering.
The risk of OHH for a job-combination is evalu-
ated based on the risk assessment score (RAS) of
workers using artificial neural networks. It is ex-
tremely difficult to evaluate RAS for every possi-
ble amalgamation of WH, RB, & NRB for each job-
combination; therefore, we use artificial neural net-
works (ANNs) with backpropagation learning, also
called backpropagation neural networks (BPNNs),
as model free estimators. ANNs evaluate risk as-
sessment score of workers for different values of
WH, RB, and NRB for each job-combination. Three
ANNs are trained, one for each job-combination,
with data set generated as above. The following
procedural steps are used for computing RAS.

1. We first identify relevant factors that influence
RAS for a given job, which are WH, RB, and
NRB. These factors have a unique subscript
number which correspond to job number as
mentioned below.

Job Firing Molding Loading Covering
Job
#

1 2 3 4

We get six factors for each job-combination
(firing-molding, firing-covering, and firing-
loading) considered in the present work, e.g., for
firing-covering job-combination, the factors are
WH1, RB1, and NRB1 for firing job, and WH4,
RB4, and NRB4 for covering job. Range of WH,

RB and NRB, for each of the four jobs are illus-
trated below.

WHi ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}

WHj ∈ 12− WHi

where, WHj is a dependent variable, i = 1 (it
refers to job # 1 i.e. firing) and, j = 2, 3, &
4 (these refer to job # 2, 3, & 4 respectively).
It is apparent that total working time in a job-
combination does not exceed 12 hours. The
range of RB and NRB are same for each of the
four jobs as shown below.

RBi ∈ {5, 10, 15, 20, 25, 30, 35, 40}

(i =1, 2, 3, 4)

NRBi ∈ {1, 2, 3, 4, 5, 6}

(i =1, 2, 3, 4)

2. Feedback from select workers is taken to assess
their perceived discomfort for their present state
of working in BM units.

3. Sample workers are trained to perform each
of the four jobs with reasonable skills for im-
plementing job-combination approach. Specif-
ically, these workers are trained by varying (i)
WH, (ii) RB, and (iii) NRB.

4. Recording/analysis of the perceived discomfort
of workers in the form of a score, called risk
assessment score (RAS), is done with respect
to variation in (i) WH, (ii) RB, and (iii) NRB.
The exhaustive data so collected act as train-
ing data for ANNs. Details of this step are
as follows. Feedback of each of the ten sam-
ple workers is taken in two phases. In the
first phase each worker is asked to rate his dis-
comfort echelon for certain pairs of WHi and
WH j in the feasible range for each of the three
job-combinations on a 7 point scale. Each of
the linguistic values of the scale, such as, ex-
tremely low, low, moderate, high, very high and
extremely high, is assigned its equivalent nu-
meric value. In this way an average score is
obtained for each of the five pairs of WHi and
WH j for each job-combination i-j, which is re-
ferred to as score1. Second phase accounts for
rest breaks and number of rest breaks. Each of
the sample workers is now asked to rate the re-
duction in his discomfort level for each of the
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technique and that is how genetic algorithms tran-
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EMO techniques encompass different versions of
multiobjective GAs including NSGA-II, which has
been successfully employed to solve many MOO
problems in science and engineering [6].

2 Methodology

Ten male workers (mean age: 24 years, average
height: 165 cm, average weight: 53 Kg, average job
experience: 4 years) are taken for the study. None
of these workers report a history of chronic health
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#
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loading) considered in the present work, e.g., for
firing-covering job-combination, the factors are
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It is apparent that total working time in a job-
combination does not exceed 12 hours. The
range of RB and NRB are same for each of the
four jobs as shown below.

RBi ∈ {5, 10, 15, 20, 25, 30, 35, 40}

(i =1, 2, 3, 4)

NRBi ∈ {1, 2, 3, 4, 5, 6}

(i =1, 2, 3, 4)

2. Feedback from select workers is taken to assess
their perceived discomfort for their present state
of working in BM units.

3. Sample workers are trained to perform each
of the four jobs with reasonable skills for im-
plementing job-combination approach. Specif-
ically, these workers are trained by varying (i)
WH, (ii) RB, and (iii) NRB.

4. Recording/analysis of the perceived discomfort
of workers in the form of a score, called risk
assessment score (RAS), is done with respect
to variation in (i) WH, (ii) RB, and (iii) NRB.
The exhaustive data so collected act as train-
ing data for ANNs. Details of this step are
as follows. Feedback of each of the ten sam-
ple workers is taken in two phases. In the
first phase each worker is asked to rate his dis-
comfort echelon for certain pairs of WHi and
WH j in the feasible range for each of the three
job-combinations on a 7 point scale. Each of
the linguistic values of the scale, such as, ex-
tremely low, low, moderate, high, very high and
extremely high, is assigned its equivalent nu-
meric value. In this way an average score is
obtained for each of the five pairs of WHi and
WH j for each job-combination i-j, which is re-
ferred to as score1. Second phase accounts for
rest breaks and number of rest breaks. Each of
the sample workers is now asked to rate the re-
duction in his discomfort level for each of the
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four jobs for certain feasible values of RBi/NRBi

and RB j/NRB j. Workers’ views are translated
into a numeric score in the similar way, which
is called score2. RAS is obtained simply by
subtracting score2from score1 for each set of
WHi/RBi/NRBi and WH j/RB j/NRB j. It is obvi-
ous that WHi and WH j contribute positively to
RAS, whereas higher values of RBi, RB j, NRBi,
and NRB j would cause a decrease in RAS. These
experimentations allow us to assign a linguistic
value of perceived discomfort level (PDL) to dif-
ferent ranges of RAS as shown in Table 1.

5. ANN models are trained with available data set
for each job-combination.

6. Lastly the accuracy of ANN models is tested
and validated with testing data set which has not
been used in training.

Sample training data set of ANN models for
each of the three job-combinations are shown in Ta-
ble 2(a), Table 2(b) and Table 2(c) respectively. The
wages of workers are based on the job they are do-
ing. In fact workers in a BM unit are paid either
contractually or on salary basis − the details fol-
low (local designation of each category of workers
is mentioned in bracket). Firing workers (jalaiye)
monitor the fire in the kiln and ensure proper bak-
ing of bricks while adding fuel from the top of kiln
through covered holes as and when necessary. Fir-
ing being a skilled and tough job is a high earning
job − INR 50,000 per month is paid to a set of 6 fir-
ing workers. Molding workers (pathaiye) are paid
INR 360 per 1000 molded bricks. The target out-
put per day is about 50000 bricks − molded by 120
workers (generally 60 couples). Loading workers
(bharaiye) transport the molded bricks from mold-
ing place to kiln using a pushcart or a pony-cart
and their earning depends upon the distance trav-
elled. The wages are INR 70 per 800 m distance per
1000 bricks transported. Covering workers cover
the stacks of molded bricks in the kiln with clay
sand skillfully so that the bricks are baked uni-
formly in the kiln. INR 18000 per month is paid
to a set of 3 covering workers. The following table
summarizes per hour earnings of a worker of each
category of jobs under consideration.

Job (Job#) Earnings/hour (in
INR)

Firing (1) 23.15
Molding (2) 12.50
Loading (3) 19.45
Covering (4) 16.67

Since the proposed system is flexible enough
to allow a good amount of rest break (up to
40 minutes) and sufficient number of rest breaks
(up to 6), therefore we find it lucid to deduct
an amount equivalent to his total rest break time
from his earnings/day from the viewpoint of imple-
mentability of the proposed system by the owner
of the BM unit. The resulting expression for earn-
ings/day (ERi− j/day) is illustrated below for i-j job-
combination.

ERi− j/Day =
{

WHi − (RBi×NRBi)
60

}
×ERi +

{
WH j −

(RB j×NRB j)
60

}
×ER j (1)

Now we formally define the RET problem for the
first job-combination below.

(i = 1) refers to job # 1 (i.e. firing), and (j = 2) refers
to job # 2 (i.e. molding).

Min RASi− j

Max ERi− j/day

Subject to

WHi ∈ {2, 3, .., 10} (i = 1)

WHj ∈ 12− WHi ( j = 2)

RBi ∈ {5, 10, 15, 20, 25, 30, 35, 40}
(i = 1, 2)

NRBi ∈ {1, 2, 3, 4, 5, 6}
(i = 1, 2)

NRBi ≤





δ1, i f 7 ≤WHi ≤ 10
δ2, i f 3 ≤WHi < 7
1, i f WHi < 3

where δ1 = min?{6, (WHi −4)} and

δ2 = {3, (WHi −2)}

Formulation for the second and third RET prob-
lems can be easily obtained from the above one by
having (j = 3), and (j = 4) respectively in place of
(j= 2).
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3 NSGA-II for RET

We employ non-dominated sorting genetic
algorithm-II (NSGA-II) in solving RET, a multiob-
jective optimization problem. NSGA-II has proved
its effectiveness in solving many real life MOO
problems in terms of convergence of solutions to
Pareto-optimal front, and in maintaining diversity
of solutions within the population. The NSGA-II
algorithm and its detailed implementation proce-
dure can be found in [6, 7]. A brief description
of NSGA-II is as follows. NSGA-II uses non-
dominated sorting for fitness assignments. All indi-
viduals not dominated by any other individuals, are
assigned front number 1. All individuals dominated
by individuals in front number 1 are assigned front
number 2, and so on. Selection is made using tour-
nament between two individuals. The individual
with the lowest front number is selected if the two
individuals are from different fronts. A higher fit-
ness is assigned to individuals located on a sparsely
populated part of the front. Each individual is made
to participate in exactly two tournaments, thereby
making at most two copies of itself in the selected
population. There are N parents in any iteration
and crossover is used to generate N new individuals
(offspring). This is followed by mutation which is
applied on a few randomly selected individuals. In
the context of RET problem, a solution in NSGA-
II is an array (gi), where i = 1, 2, . . . 5, which
represents an instance of a job-combination (Fig.
2). Here g1, g2, g3, g4 and g5 represent WHi, RBi,
NRBi, RB j, and NRB j respectively.

Figure 2. An instance of job-combination schedule

The initial population consists of N solutions,
where N strings are selected randomly from the fea-
sible search space. These solutions are referred to
as parents. For the crossover, two strings (say, S1
and S2) from the population are selected randomly.
The offspring O1 and O2 are produced as follows:
First the working hours of S1 and S2 are stored in
the respective positions of O2 and O1 respectively.
The remaining entries of S1 and S2 are copied to
O1 and O2 respectively. To ensure the feasibility of
offspring, the number of rest breaks is checked and
if it does not satisfy the conditions as mentioned in
the formulation part (last paragraph of section 2);
its value is reassigned randomly so as to make it
feasible. Mutation is performed on randomly se-
lected (rm*N) individuals from the offspring pop-
ulation wherein the working hours in the selected
individual are reassigned randomly, where rm is the
mutation rate.

4 Simulation Results

The design and implementation of the ANN
models is far from an exact science. Several de-
sign issues need to be finalized carefully to obtain
a functional model. The selection of the number of
neurons in the two hidden layers is critical for the
success of training the ANN model. The ANN at-
tempts to create a function mapping by adjusting the
weights in the inner layers. If the number of these
neurons is too large, the ANN may be over-trained
giving spurious values in the testing phase. If too
few neurons are selected, the function mapping may
not be accomplished due to under-training. The
number of neurons are selected with appropriate ex-
perimentation, as there are no standard procedures
available for all kinds of ANN training problems.
Similarly, the selection of the learning rate and af-
fect the convergence of the network. In the BPNN
with LM rule, the learning rate and are continually
modified based on the training results. Therefore,
only the initial values have to be specified in the
model.

As mentioned earlier, three exhaustive training
data, one for each ANN, are collected by interview
method. Each ANN comprises a three layer net-
work with six inputs i.e., WHi, RBi, and NRBi for
job involving the risk of heat stress, and WH j, RB j,
and NRB j for second job under consideration, and



83Yogesh K Anand et al.

3 NSGA-II for RET

We employ non-dominated sorting genetic
algorithm-II (NSGA-II) in solving RET, a multiob-
jective optimization problem. NSGA-II has proved
its effectiveness in solving many real life MOO
problems in terms of convergence of solutions to
Pareto-optimal front, and in maintaining diversity
of solutions within the population. The NSGA-II
algorithm and its detailed implementation proce-
dure can be found in [6, 7]. A brief description
of NSGA-II is as follows. NSGA-II uses non-
dominated sorting for fitness assignments. All indi-
viduals not dominated by any other individuals, are
assigned front number 1. All individuals dominated
by individuals in front number 1 are assigned front
number 2, and so on. Selection is made using tour-
nament between two individuals. The individual
with the lowest front number is selected if the two
individuals are from different fronts. A higher fit-
ness is assigned to individuals located on a sparsely
populated part of the front. Each individual is made
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II is an array (gi), where i = 1, 2, . . . 5, which
represents an instance of a job-combination (Fig.
2). Here g1, g2, g3, g4 and g5 represent WHi, RBi,
NRBi, RB j, and NRB j respectively.

Figure 2. An instance of job-combination schedule
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Similarly, the selection of the learning rate and af-
fect the convergence of the network. In the BPNN
with LM rule, the learning rate and are continually
modified based on the training results. Therefore,
only the initial values have to be specified in the
model.
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data, one for each ANN, are collected by interview
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job involving the risk of heat stress, and WH j, RB j,
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one output i.e. RAS. Fig. 3, Fig. 4 and Fig. 5
illustrate ANN trainings of firing-loading, firing-
covering, and firing-molding respectively; the error
goal is met very fast in each of three cases as the
training curves are steep enough – it takes 139, 53,
and 78 epochs respectively to meet the desired goal
of 1e – 005. It is interesting to note that a significant
improvement occurs in a very next epoch (i.e. 136th

epoch) in the ANN training of firing work-loading –
an accuracy of more than order le –005 is achieved
(Fig. 3). However, an appropriate ANN training
requires considerable efforts in terms of different
sets of hit and trial. After an extensive set of ex-
periments we decide the number of hidden layers
as well as number of neurons in hidden layers.

After the training, the weights are frozen and
the model is tested for validation. For this purpose,
the input parameters to the network are sets of val-
ues that have not been used for training the network
but are in the same range as those used for training
– testing data. This enables us to test the network
with regard to its capability for interpolation. ANN
results for risk assessment score are thus obtained
for the testing data. Then each of the ten sample
workers is asked to perform jobs as per each set
of the testing data to evaluate the experimental re-
sults of RAS. The level of agreement between the
RAS predicted by ANN models and the correspond-
ing actual ones obtained from workers indicates the
good performance of the methodology employed in
this work.

For training problem at hand the following pa-
rameters were found to give rapid convergence of
the training network with good performance in the
estimation. The first and second layers of the neu-
rons are modeled with a log of the sigmoid func-
tion, and the third layer was a purely linear function.
Neurons taken in the first and second hidden layers
are three and two respectively. Maximum epochs
are considered as 250, the error goal was set at 1e-
005, and the learning rate for training the ANN is
taken as 0.2. The results of the validation of ANN
models as described above for BM units are given in
Table 3(a) to Table 3(c) for job-combinations tack-
led in this work.

NSGA-II implementation details are as follows.
The procedure is coded in MATLAB 7.0 and run on
Pentium (R)-based HP Intel (R) computer with 1.73
GHz Processor and 512 MB of RAM. The crossover

rate and the mutation rate are kept as 1.0 and 0.05
respectively. The population size is chosen as 50.
Computational experiments are performed to de-
cide these parameters on the basis of faster conver-
gence criteria. The search is set to terminate when
nondominated RET profile remains unchanged for
three consecutive iterations − a number is suitably
decided based on extensive experiments. It takes on
an average ten iterations for NSGA-II to search for
the best possible RET profile. Results of example
runs of NSGA-II follow to demonstrate its perfor-
mance to solve three RET problems under consid-
eration.

Fig. 6, Fig. 7, and Fig. 8 depict the results
for firing-loading job-combination. It can be seen
that the initial population is well distributed over
the solution space (Fig. 6). Fig. 7 illustrates the in-
termediate improvements in the RET profile along
with different fronts of the population. In succeed-
ing iterations NSGA-II searches for optimal RET
profile. Fig. 8 depicts the nondominated RET solu-
tion points of the final generation population, which
are the best points obtained. These points are shown
in bold with bold Pareto front in each of the three
cases.

Figure 3. ANN training of Firing-loading

Figure 4. ANN training of Firing-covering
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Figure 5. ANN training of Firing-molding

Figure 6. Firing-loading job-combination: Initial
population with nondominated RET profile

Figure 7. Firing-loading job-combination:
Intermediate improvements in the RET profile

along with other fronts

Figure 8. Firing-loading job-combination: RET
profile and other fronts of final generation

population

Figure 9. Firing-covering job-combination: Initial
population with nondominated RET profile

Figure 10. Firing-covering job-combination:
Intermediate improvements in the RET profile

along with other fronts
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Figure 11. Firing-covering job-combination: RET
profile and other fronts of final generation

population

Figure 12. Firing-molding job-combination:
Initial population with nondominated RET profile

Figure 13. Firing-molding job-combination:
Intermediate improvements in the RET profile

along with other fronts

Figure 14. Firing-molding job-combination: RET
profile and other fronts of final generation

population

Fig. 9, Fig. 10 and Fig. 11 show the ini-
tial population, intermediate improvement, and fi-
nal generation population respectively for firing-
covering job-combination − as we move to the final
generation population from initial one, we observe
a good convergence of solution points to higher
fronts. More and more solution points accumu-
late on the best achieved RET profile which pro-
vides more flexibility to the worker and supervisor
in choosing a job-combination strategy. The popu-
lation is well diversified over the solution space in
each of the three cases. In other words NSGA-II
performs well to solve RET problems under con-
sideration.

Firing-molding is a job-combination wherein
firing is combined with the least severe job. This
combination allows a worker to do firing work for
more number of hours in comparison to previous
two job-combinations which may be an important
requirement in a BM unit. Fig. 12, Fig. 13 and Fig.
14 represent the NSGA-II fronts for the initial pop-
ulation, intermediate improvements, and final gen-
eration population respectively for firing-molding
job-combination.

We present the non-dominated solution points
appearing on the RET profile of final generation
population along with best achieved tradeoff points
of ER/day and RAS in tabular form for each of
three job-combinations. PDL values are also shown
along with RAS in the last column. In general,
workers are in safer zone till PDL is moderate. Be-
yond this they fall into higher and higher risk zones
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as PDL assumes values high, very high, and ex-
tremely high. Table 4 shows the solution points for
firing-loading job-combination. PDL is moderate
till 23rd solution point and workers fall into the un-
safe zone from 24th solution point onwards. RET
solutions provide a huge flexibility to workers and
supervisors in terms of choosing the working hours,
rest breaks and number of rest breaks. Further the
safer zone limits the earnings to INR 256/day (refer
to 23rd solution point). If at all a worker is inter-
ested to earn more, he or she will have to move to
the risky zones. Captivatingly, our proposed system
provides the best possible earnings to a worker even
in the risk zones. For example say in an extreme
case, a worker may choose the last solution point
i.e. 29th solution point − this would correspond to
a very high earnings of INR 265/day against a RAS
of 69.37 corresponding to a high PDL.

Nondominated solution points of the final
generation RET profile for firing-covering job-
combination are shown in Table 5. We observe
that this combination provides many of the solu-
tion points falling into the safer zone. The PDL
value is moderate till 32nd solution point out of to-
tal 34 points. Hence there is a better flexibility for a
worker/supervisor to choose a solution point in the
safer zone. The highest earning in the safer zone
is limited to INR 255/day against a RAS equal to
52.72, and PDL being moderate (refer to 32nd solu-
tion point).

Table 6 demonstrates the best obtained RAS-
Earnings tradeoff solution points for firing-molding
job-combination. It is interesting to observe that
herein we obtain some very low values of RAS ow-
ing to the fact that molding is comparatively less
severe job. So firing-molding is a useful combina-
tion for workers who are aged and/or having some
health issues. We present the comparison of two
solution points (17th and 18th both having low PDL
and minor differences in terms of RAS and ER/Day)
below to illustrate the flexibility with respect to RB
and NRB of firing job. Workers preferring more RB
over NRB for firing job have a choice to opt for 18th

solution point, which provides a single rest break of
25 minutes for 6 working hours. Whereas those fa-
voring NRB over RB can go for 17th solution point,
which offers 3 rest breaks each of 5 minutes.

SP 17th 18th

WH1 6 6
RB1 5 25
NRB1 3 1
WH3 6 6
RB3 40 10
NRB3 1 1
ER/day 200 202
RAS 23.33 26.56

4.1 Comparing JCA with existing situa-
tion

For comparison purposes we compute RAS in
the existing situation in the BM unit at different fea-
sible values of WH, RB and NRB for the jobs that
are performed without any combination. We do so
specifically for the firing job (job#1).

Case 1: Firing job alone

Worker is doing firing job in the existing system for
12 hours with a single rest break of 15 minutes. The
effective working time is 11 hours and 45 minutes.

WH1 RB1 NRB1

12 15 1

We can compute RAS using any of the three
ANN models employed in this work by substitut-
ing WHi = 12, RBi = 15, NRBi = 1, WH j = 0, RB j =
0, and NRB j = 0. RAS so obtained is 72.28, which
corresponds to very high PDL as per Table 1.

Case 2: Firing-loading job-combination

Worker is doing firing job for 10 hours with a
single rest break of 10 minutes and a loading job
for 2 hours with a single rest break of 5 minutes re-
fer to 29th solution point of Table 4. The effective
time is again 11 hours and 45 minutes

WH1 RB1 NRB1 WH2 RB2 NRB2

10 10 1 2 5 1

RAS for this combination is 69.37 and the corre-
sponding PDL is high. While comparing the results,
RAS is higher in job alone case (72.28 > 69.37) with
an increase in ER/day of Rs 7.00. PDL drops down
to high in job-combination approach from very high
in job alone case. Thus job-combination approach
reduces the RAS/PDL and hence RoOHH.



87Yogesh K Anand et al.
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tremely high. Table 4 shows the solution points for
firing-loading job-combination. PDL is moderate
till 23rd solution point and workers fall into the un-
safe zone from 24th solution point onwards. RET
solutions provide a huge flexibility to workers and
supervisors in terms of choosing the working hours,
rest breaks and number of rest breaks. Further the
safer zone limits the earnings to INR 256/day (refer
to 23rd solution point). If at all a worker is inter-
ested to earn more, he or she will have to move to
the risky zones. Captivatingly, our proposed system
provides the best possible earnings to a worker even
in the risk zones. For example say in an extreme
case, a worker may choose the last solution point
i.e. 29th solution point − this would correspond to
a very high earnings of INR 265/day against a RAS
of 69.37 corresponding to a high PDL.

Nondominated solution points of the final
generation RET profile for firing-covering job-
combination are shown in Table 5. We observe
that this combination provides many of the solu-
tion points falling into the safer zone. The PDL
value is moderate till 32nd solution point out of to-
tal 34 points. Hence there is a better flexibility for a
worker/supervisor to choose a solution point in the
safer zone. The highest earning in the safer zone
is limited to INR 255/day against a RAS equal to
52.72, and PDL being moderate (refer to 32nd solu-
tion point).

Table 6 demonstrates the best obtained RAS-
Earnings tradeoff solution points for firing-molding
job-combination. It is interesting to observe that
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and minor differences in terms of RAS and ER/Day)
below to illustrate the flexibility with respect to RB
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over NRB for firing job have a choice to opt for 18th

solution point, which provides a single rest break of
25 minutes for 6 working hours. Whereas those fa-
voring NRB over RB can go for 17th solution point,
which offers 3 rest breaks each of 5 minutes.
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4.1 Comparing JCA with existing situa-
tion

For comparison purposes we compute RAS in
the existing situation in the BM unit at different fea-
sible values of WH, RB and NRB for the jobs that
are performed without any combination. We do so
specifically for the firing job (job#1).

Case 1: Firing job alone

Worker is doing firing job in the existing system for
12 hours with a single rest break of 15 minutes. The
effective working time is 11 hours and 45 minutes.
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We can compute RAS using any of the three
ANN models employed in this work by substitut-
ing WHi = 12, RBi = 15, NRBi = 1, WH j = 0, RB j =
0, and NRB j = 0. RAS so obtained is 72.28, which
corresponds to very high PDL as per Table 1.

Case 2: Firing-loading job-combination

Worker is doing firing job for 10 hours with a
single rest break of 10 minutes and a loading job
for 2 hours with a single rest break of 5 minutes re-
fer to 29th solution point of Table 4. The effective
time is again 11 hours and 45 minutes

WH1 RB1 NRB1 WH2 RB2 NRB2

10 10 1 2 5 1

RAS for this combination is 69.37 and the corre-
sponding PDL is high. While comparing the results,
RAS is higher in job alone case (72.28 > 69.37) with
an increase in ER/day of Rs 7.00. PDL drops down
to high in job-combination approach from very high
in job alone case. Thus job-combination approach
reduces the RAS/PDL and hence RoOHH.
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4.2 Global RET solution points

Compilation of non-dominated RET solutions
of three job-combinations presents the global RET
solution points in Table 7. RET solutions provide a
wider flexibility to a worker/supervisor to complete
the jobs in the BM unit. To illustrate the importance
of global RET solutions, we present the following
case, which compare two solution points, 4th and
9th, of Table 7, both belonging to firing-covering
job-combination.

NRB j of 4th solution point is 5 whereas NRB j

of 9th solution point is 3, rest of the values of both
the strings are identical. Although PDL of both of
these points is same (i.e. very low, VL), yet there
is a wider choice available to worker/supervisor in
terms of RAS and ER/Day to complete the jobs. If
a worker is not young or/and having some health
problem, a decision may be taken to choose the 4th

solution point which offers five rest breaks for jth

job, resulting in much lower RAS. However, this op-
tion reduces his/her ER/Day by INR 17.00.

On the contrary a healthier or/and young worker
can go for 9th solution point which would result in
higher ER/Day.

SP 4th 9th

WHi 2 2
RBi 40 40
NRBi 1 1
WH j 10 10
RB j 30 30
NRB j 5 3
ER/Day 156 173
RAS 9.14 13.00

4.3 Comparison of NSGA-II with enumer-
ation technique

Further, a comparison of NSGA-II with enu-
meration technique follows. Enumeration tech-
nique performs a total of 50176 searches to com-
pute the nondominated solution points for one job-
combination whereas NSGA-II takes a maximum
of 800 searches for the same. Further, the mean
elapse time of a single run of NSGA-II is computed
as 3.012 second − a very fast convergence. It is ob-
served that the near optimal nondominated front is
attained in 4th or 5th iteration and in the remaining
iterations more and more solutions points belong-

ing to this front are explored thereby increasing the
size of the nondominated front.

5 Conclusion

An intelligent system is presented to reduce
RoOHH of workers in labor intensive manufactur-
ing units. It acts as an advisor to a worker to
choose a job-combination and the corresponding
values of WH, RB, & NRB to decide his/her oc-
cupational risks and earnings suitably. The present
work is implemented in a brick manufacturing unit,
wherein workers perform firing job, identified to
be the most severe job, with other jobs of a BM
unit. Job-combination approach ensures that work-
ers’ earnings are not compromised to a greater ex-
tent. ANN models are effectively used to estimate
RAS for different job-combinations. Performance
of these models is demonstrated by evaluating RAS
for the testing data and comparing them with ex-
perimental results. NSGA-II searches for the op-
timal RAS-earning tradeoff profile. NSGA-II does
not place any restriction on the form of inputs (WH,
RB, and NRB of two jobs) to evaluate RAS and earn-
ings for a given job-combination. The unifying sys-
tem amalgamating ANNs and NSGA-II in a unique
way turns out to be a powerful scheme without los-
ing its simplicity. For complex optimization sce-
nario, it can effectively search for the optimal val-
ues of WH, RB, and NRB for minimum RAS and
maximum earnings.

Brick kiln owners face the problems of putting
together and managing large number of work-
ers while considering their health hazards, absen-
teeism, limited time schedules, and environment
uncertainty. Further, the top management faces the
problem of monopoly of workers of firing work in
BM units, as it is a high skill job. The system pre-
sented in this work will alleviate this problem as
job-combination approach will make other workers
getting trained for firing work. In fact the system
will help in ‘work generalization’ to take over ‘work
specialization’. Therefore, the feasibility of imple-
menting this system is high as it is beneficial to both
− workers as well as owners. In view of these facts,
the work presented here forms an important basis to
effectively address the issues in health management
of workers.
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Table 1. Relationship between RAS and PDL

RAS (Range a-
b)∗

PDL Abbreviation

1-6 Extremely
Low

EL

6-16 Very Low VL
16-35 Low L
35-54 Moderate M
54-70 High H
70-75 Very High VH
75 and above Extremely

high
EH

∗Range a-b indi-
cates a ≤ RAS <
b

Table 2. Sample input data for training ANN
(a)Firing-Loading

WH1 RB1 NRB1 WH3 RB3 NRB3 Risk Assessment
Score (RAS)

10 40 1 2 40 1 62.3
8 40 3 4 10 2 47.8
6 40 1 6 40 1 42.0
4 10 2 8 10 1 34.9
2 10 1 10 10 3 29.9

(b)Firing-Covering
WH1 RB1 NRB1 WH4 RB4 NRB4 Risk Assessment

Score (RAS)
10 10 1 2 10 1 57.6
8 20 2 4 20 2 40.6
6 10 2 6 40 3 27.6
4 20 2 8 20 3 21.4
2 20 1 10 20 2 18.7

(c)Firing-Molding
WH1 RB1 NRB1 WH2 RB2 NRB2 Risk Assessment

Score (RAS)
10 20 3 2 10 1 45.9
8 10 2 4 10 2 35.1
6 20 2 6 40 3 22.0
4 20 1 8 40 3 16.0
2 20 1 10 10 3 13.0
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Table 3. Comparison of results of Risk Assessment Score

(a)Firing-Loading
WH1 RB1 NRB1 WH3 RB3 NRB3 Risk Assessment Score

(RAS)
Experimental
Results

ANN Re-
sults

2 10 1 10 20 3 28.6 28.2
4 20 1 8 40 2 32.0 32.1
8 40 2 4 20 2 50.0 49.8
10 10 3 2 40 1 62.0 61.1

(b)Firing-Covering
WH1 RB1 NRB1 WH4 RB4 NRB4 Risk Assessment Score

(RAS)
Experimental
Results

ANN Re-
sults

4 10 2 8 20 3 23.2 22.83
6 20 3 6 10 2 31.2 29.82
8 40 3 4 10 1 37.43 39.16
10 20 1 2 40 1 54.64 57.61

(c)Firing-Covering
WH1 RB1 NRB1 WH2 RB2 NRB2 Risk Assessment Score

(RAS)
Experimental
Results

ANN Re-
sults

2 40 1 10 20 3 9.08 10.45
4 20 2 8 10 2 16.8 16.13
6 20 3 6 40 3 19.6 18.18
10 10 3 2 40 1 45.94 41.46
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Table 4. RET solution points: firing-loading job-combination

Solution
Points

WH1 RB1 NRB1 WH3 RB3 NRB3 ER/Day RAS PDL

1 2 40 1 10 30 2 206 19.17 L
2 2 30 1 10 35 1 218 21.63 L
3 2 30 1 10 30 1 220 23.35 L
4 3 35 1 9 25 1 223 25.76 L
5 4 35 1 8 25 1 227 28.95 L
6 2 15 1 10 5 1 233 29.03 L
7 3 15 1 9 5 2 235 29.89 L
8 3 15 1 9 5 1 237 30.81 L
9 4 15 1 8 5 2 239 32.72 L
10 4 15 1 8 5 1 241 33.19 L
11 4 10 1 8 5 1 243 35.87 M
12 5 15 1 7 5 1 244 36.62 M
13 4 5 1 8 5 1 245 38.38 M
14 5 10 1 7 5 1 246 40.05 M
15 6 5 2 6 15 1 247 42.00 M
16 5 5 1 7 5 1 248 42.08 M
17 7 5 3 5 15 1 249 43.58 M
18 7 5 2 5 15 1 251 45.27 M
19 8 5 3 4 15 1 252 46.87 M
20 7 5 1 5 15 1 253 48.09 M
21 8 5 2 4 15 1 254 50.46 M
22 8 5 1 4 20 1 255 52.29 M
23 7 5 1 5 5 1 256 52.80 M
24 10 5 4 2 15 1 258 57.47 H
25 8 5 1 4 5 1 259 58.38 H
26 10 5 3 2 15 1 260 61.29 H
27 10 5 1 2 20 1 262 64.03 H
28 10 5 1 2 15 1 264 66.85 H
29 10 10 1 2 5 1 265 69.37 H
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17 7 5 3 5 15 1 249 43.58 M
18 7 5 2 5 15 1 251 45.27 M
19 8 5 3 4 15 1 252 46.87 M
20 7 5 1 5 15 1 253 48.09 M
21 8 5 2 4 15 1 254 50.46 M
22 8 5 1 4 20 1 255 52.29 M
23 7 5 1 5 5 1 256 52.80 M
24 10 5 4 2 15 1 258 57.47 H
25 8 5 1 4 5 1 259 58.38 H
26 10 5 3 2 15 1 260 61.29 H
27 10 5 1 2 20 1 262 64.03 H
28 10 5 1 2 15 1 264 66.85 H
29 10 10 1 2 5 1 265 69.37 H
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Table 5. RET solution points: firing-covering job-combination

Solution
Points

WH1 RB1 NRB1 WH4 RB4 NRB4 ER/Day RAS PDL

1 2 40 1 10 30 6 148 8.35 VL
2 2 40 1 10 30 5 156 9.14 VL
3 2 40 1 10 30 4 164 11.11 VL
4 2 40 1 10 30 3 173 13.00 VL
5 2 35 1 10 5 4 194 13.76 VL
6 2 25 1 10 5 3 199 16.44 L
7 3 35 1 9 5 4 200 17.00 L
8 2 25 1 10 5 2 201 17.51 L
9 3 25 1 9 5 3 206 18.99 L
10 4 35 1 8 5 3 208 21.36 L
11 2 5 1 10 5 1 210 21.48 L
12 4 25 1 8 5 3 212 23.12 L
13 4 15 1 8 10 2 215 24.70 L
14 4 5 2 8 20 1 217 25.75 L
15 4 15 1 8 5 1 219 26.40 L
16 5 5 2 7 20 1 223 28.17 L
17 5 5 1 7 20 1 225 29.51 L
18 6 25 1 6 5 2 226 33.20 L
19 6 5 2 6 20 1 230 33.22 L
20 6 5 1 6 20 1 231 35.26 M
21 6 5 2 6 10 1 232 35.33 M
22 6 5 1 6 10 1 234 36.90 M
23 6 5 1 6 5 1 236 37.81 M
24 7 5 3 5 10 1 237 40.07 M
25 7 5 1 5 20 1 238 40.97 M
26 8 15 1 4 20 1 241 41.15 M
27 7 5 1 5 5 1 242 41.18 M
28 8 5 1 4 25 1 243 43.73 M
29 8 15 1 4 5 1 245 44.48 M
30 8 5 1 4 5 1 249 45.40 M
31 9 5 1 3 20 1 251 52.24 M
32 9 5 1 3 5 1 255 52.72 M
33 10 5 1 2 20 1 257 55.72 H
34 10 5 1 2 5 1 262 57.13 H
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Table 6. RET solution points: firing-molding job-combination

Solution
Points

WH1 RB1 NRB1 WH4 RB4 NRB4 ER/Day RAS PDL

1 2 25 1 10 30 5 130 6.78 VL
2 2 40 1 10 40 3 131 7.70 VL
3 2 40 1 10 5 1 155 8.01 VL
4 2 30 1 10 5 1 159 10.05 VL
5 3 40 1 9 5 1 165 10.53 VL
6 3 30 1 9 5 3 167 12.87 VL
7 3 30 1 9 5 1 169 12.96 VL
8 3 25 1 9 10 1 170 14.29 VL
9 4 40 1 8 5 1 176 14.34 VL
10 4 30 1 8 5 3 178 15.25 VL
11 4 25 1 8 10 2 179 16.31 L
12 4 25 1 8 10 1 181 17.17 L
13 4 5 2 8 25 1 184 19.04 L
14 5 5 3 7 40 1 189 19.15 L
15 5 30 1 7 5 2 190 21.10 L
16 5 25 1 7 10 1 192 21.74 L
17 6 5 3 6 40 1 200 23.33 L
18 6 25 1 6 10 1 202 26.56 L
19 7 5 3 5 40 1 210 27.13 L
20 7 5 3 5 10 1 217 29.92 L
21 9 10 5 3 40 1 218 30.36 L
22 7 5 2 5 10 1 219 31.22 L
23 7 5 1 5 10 1 221 31.93 L
24 8 5 3 4 10 1 227 35.16 M
25 8 5 1 4 15 1 230 36.02 M
26 9 5 3 3 40 1 232 37.07 M
27 10 5 3 2 40 1 242 40.68 M
28 10 5 2 2 40 1 244 43.42 M
29 10 5 3 2 10 1 249 46.60 M
30 10 5 2 2 10 1 251 47.15 M
31 10 5 1 2 10 1 252 48.66 M
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9 4 40 1 8 5 1 176 14.34 VL
10 4 30 1 8 5 3 178 15.25 VL
11 4 25 1 8 10 2 179 16.31 L
12 4 25 1 8 10 1 181 17.17 L
13 4 5 2 8 25 1 184 19.04 L
14 5 5 3 7 40 1 189 19.15 L
15 5 30 1 7 5 2 190 21.10 L
16 5 25 1 7 10 1 192 21.74 L
17 6 5 3 6 40 1 200 23.33 L
18 6 25 1 6 10 1 202 26.56 L
19 7 5 3 5 40 1 210 27.13 L
20 7 5 3 5 10 1 217 29.92 L
21 9 10 5 3 40 1 218 30.36 L
22 7 5 2 5 10 1 219 31.22 L
23 7 5 1 5 10 1 221 31.93 L
24 8 5 3 4 10 1 227 35.16 M
25 8 5 1 4 15 1 230 36.02 M
26 9 5 3 3 40 1 232 37.07 M
27 10 5 3 2 40 1 242 40.68 M
28 10 5 2 2 40 1 244 43.42 M
29 10 5 3 2 10 1 249 46.60 M
30 10 5 2 2 10 1 251 47.15 M
31 10 5 1 2 10 1 252 48.66 M
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Table 7. RET solution points: global RET profile

Solution
Points

WHi RBi NRBi WH j RB j NRB j ER/Day RAS PDL Job-
combination

1 2 25 1 10 30 5 130 6.78 VL FM
2 2 40 1 10 40 3 131 7.70 VL FM
3 2 40 1 10 5 1 155 8.01 VL FM
4 2 40 1 10 30 5 156 9.14 VL FC
5 2 30 1 10 5 1 159 10.05 VL FM
6 3 40 1 9 5 1 165 10.53 VL FM
7 3 30 1 9 5 3 167 12.87 VL FM
8 3 30 1 9 5 1 169 12.96 VL FM
9 2 40 1 10 30 3 173 13.00 VL FC
10 2 35 1 10 5 4 194 13.76 VL FC
11 2 25 1 10 5 3 199 16.44 L FC
12 3 35 1 9 5 4 200 17.00 L FC
13 2 25 1 10 5 2 201 17.51 L FC
14 3 25 1 9 5 3 206 18.99 L FC
15 4 35 1 8 5 3 208 21.36 L FC
16 2 5 1 10 5 1 210 21.48 L FC
17 2 30 1 10 35 1 218 21.63 L FL
18 2 30 1 10 30 1 220 23.35 L FL
19 3 35 1 9 25 1 223 25.76 L FL
20 4 35 1 8 25 1 227 28.95 L FL
21 2 15 1 10 5 1 233 29.03 L FL
22 3 15 1 9 5 2 235 29.89 L FL
23 3 15 1 9 5 1 237 30.81 L FL
24 4 15 1 8 5 2 239 32.72 L FL
25 4 15 1 8 5 1 241 33.19 L FL
26 4 10 1 8 5 1 243 35.87 M FL
27 5 15 1 7 5 1 244 36.62 M FL
28 4 5 1 8 5 1 245 38.38 M FL
29 5 10 1 7 5 1 246 40.05 M FL
30 6 5 2 6 15 1 247 42.00 M FL
31 5 5 1 7 5 1 248 42.08 M FL
32 7 5 3 5 15 1 249 43.58 M FL
33 7 5 2 5 15 1 251 45.27 M FL
34 8 5 3 4 15 1 252 46.87 M FL
35 7 5 1 5 15 1 253 48.09 M FL
36 8 5 2 4 15 1 254 50.46 M FL
37 8 5 1 4 20 1 255 52.29 M FL
38 7 5 1 5 5 1 256 52.80 M FL
39 10 5 1 2 20 1 257 55.72 H FC
40 10 5 1 2 5 1 262 57.13 H FC
41 10 5 1 2 15 1 264 66.85 H FL
42 10 10 1 2 5 1 265 69.37 H FL
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As the proposed system is general enough to be
applied to any labor intensive industrial unit, there-
fore, as part of future work, one can employ it to
solve similar problems of other industrial units. It
may also be attempted to investigate the results by
having three or more jobs in a job-combination.
Further, it would be interesting to experiment with
other standard EMO techniques such as SPEA-2or
PAES in place of NSGA-II, to search for optimal
work schedules in a job-combinations. Results can
be compared using metrics to evaluate diversity and
cnvergence properties of EMO.
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