PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A lab study of mineral scale buildup on lined and traditional PE water pipes for acid mine drainage treatment applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastic, especially polyethylene (PE), pipe material is increasingly used in mining applications due to its inert nature, flexibility, low density, and low cost. Though resistant to chemical corrosion, it is susceptible to abrasion. To combat this problem, an abrasion-resistant liner is in development. However, it is not yet known how the liner will perform with regards to other common problems that affect pipe systems, such as mineral scale buildup. In mining applications, scale buildup occurs due to the very high contents of suspended and dissolved solids in water or slurry. For example, in systems transporting raw or treated acid mine drainage (AMD), scale can form on pipe surfaces due to sedimentation or the diffusion of particles onto the surface, or precipitation of solids directly onto the surface. In this study, pipe-loop experiments were conducted in the laboratory under three idealized AMD treatment scenarios (i.e., untreated, passively treated and actively treated) to compare mineral scale buildup on traditional versus lined PE pipe materials.
Rocznik
Strony
33--45
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Virginia Tech, Blacksburg, VA, USA
autor
  • Virginia Tech, Blacksburg, VA, USA
Bibliografia
  • [1] Lottermoser B. Mine wastes characterization, treatment and environmental impacts. Springer Berlin Heidelberg; 2003.
  • [2] Fourie A, Bouazza A, Lupo J, Abrão P. Improving the performance of mining infrastructure through the judicious use of geosynthetics. In: 9th international conference on geosynthetics; 2010.
  • [3] Mandrone G. An ultrasonic prototype to remedy pipes clogging. Bulletin Engin Geo Environ 2015;75(2):673-80. https://doi.org/10.1007/s10064-015-0833-7.
  • [4] Runtti H, Tolonen ET, Tuomikoski S, Luukkonen T, Lassi U. How to tackle the stringent sulfate removal requirements in mine WaterTreatmentda review of potential methods. Environ Res 2018;167:207-22. https://doi.org/10.1016/j.envres. 2018.
  • [5] Singer P, Stumm W. Acidic mine drainage: The rate-determining step. Science 1970;167(3921):1121-3. Retrieved from, http://www.jstor.org.ezproxy.lib.vt.edu/stable/1728684.
  • [6] McLemore VT, editor. Basics of metal mining influenced water, Vol. 1. The Society for Mining, Metallurgy, and Exploration, Inc; 2008.
  • [7] Nordstrom DK. Mine waters: Acidic to circmneutral. Elements 2011;7(6):393-8. https://doi.org/10.2113/gselements.7.6.393.
  • [8] Cherry D, Currie R, Soucek D, Latimer H, Trent G. An integrative assessment of awatershed impacted by abandoned mined land discharges. Environ Pollu 2001;111(3): 377-88. https://doi.org/10.1016/s0269-7491(00)00093-2.
  • [9] Cravotta CA, Brady KBC. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania. USA Appl. Geochem. 2015. https://doi.org/10.1016/j.apgeochem.2015.03.001.
  • [10] Gross W. Ecophysiology of algae living in highly acidic environments. Hydrobiologia 2000;433(1-3):31-7.
  • [11] Olõas M, Nieto J, Sarmiento A, Cerón J, Cánovas C. Seasonal water quality variations ina river affected by acid mine drainage: The odiel river (south west Spain). Sci Tot Environ 2004;333(1-3):267-81. https://doi.org/10.1016/j.scitotenv.2004.05.012.
  • [12] Younger Paul L, Wolkersdorfer C. Mining impacts on the fresh water environment: Technical and managerial guidelines for catchment scale management. Mine Water Environ 2004;23(S1). https://doi.org/10.1007/s10230-004-0028-0.
  • [13] Zhao JQ, Ju HY, Li JH. Corrosion mechanism of similar soil slope corroded by AcidMine drainage and its reinforcing treatments in metal mines. Appl Mechan Mat 2011;90-93: 597-600. https://doi.org/10.4028/www.scientific.net/amm.90-93.597.
  • [14] Younger PL, Banwart SA, Hedin RS. Mine water: Hydrology, pollution, remediation. New York, NY: Springer Publishing; 2002.
  • [15] Skousen J, Zipper C, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, et al. Review of passive systems for acid mine drainage treatment. Mine Water Environ 2016;36:133-53. https://doi.org/10.1002/9781118749197.ch30.
  • [16] Taylor J, Pape S, Murphy N. A summary of passive and active treatment technologies for Acid and metalliferous drainage (AMD). 2005.
  • [17] Hengen TJ, Squallice MK, O'Sullivan AD, Stone JJ. Life cycle assessment analysis ofactive and passive acid mine drainage treatment technologies. Res Cons Recycl 2014;86:160-7.
  • [18] Rakotonimaro TV, Neculita CM, Bussière B, Benzaazoua M, Zagury GJ. Recoveryand reuse of sludge from active and passive treatment of mine drainage-impacted waters: Areview. Environ Sci Pollu Res 2017;24(1):73-91. https://doi.org/10.1007/s11356-0167733-7.
  • [19] Al TA, Martin CJ, Blowes DW. Carbonate-mineral/water interactions in sulfide-rich mine tailings. Geochimica et Cosmochimica Acta 2000;64(23):3933-48. https://doi.org/10.1016/s00167037(00)00483-x.
  • [20] Watzlaf GR, Schroeder KT, Kairies CL. Long-term performance of anoxic limestonedrains. Mine Water Environ 2000; 19(2):98e110. https://doi.org/10.1007/bf02687258.
  • [21] Campbell K, Alpers C, Nordstrom D, Blum A, Williams A. Characterization and remediation of iron(III) oxide-rich scale in a pipeline carrying acid mine drainage at iron mountain mine, California, USA. Geomicrob J 2013;34(3):193e206. https://doi.org/10.1080/01490451.2016. 1155679.
  • [22] Rötting TS, Thomas RC, Ayora C, Carrera J. Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate. J Environ Qual 2008;37(5): 1741. https://doi.org/10.2134/jeq2007.0517.
  • [23] DeCou G, Davies P. Evaluation of abrasion resistance of pipe and pipe lining materials. California Department of Transportation; 2007.
  • [24] Pezzuto A, Sarver EA, Mischo H. A field study OF mineral scale buildup ON lined ANDTRADITIONAL PE water pipes. In: Proceedings of the 2017 SME annual conference and expo (paper 17-139). Denver, CO; 2017.
  • [25] Muryanto S, Bayuseno A, Ma'Mun H, Usamah M, Jotho. Calcium carbonate ScaleFormation in pipes: Effect of flow rates, temperature, and malic acid as additives on the massand morphology of the scale. Pro Chem 2014;9:69-76. https://doi.org/10.1016/j.proche.2014.05.009.
  • [26] Balintova M, Petrilakova A. Study of pH influence on selective precipitation of heavy metals from acid mine drainage. Chem Engin Trans 2011;25. https://doi.org/10.3303/CET1125058.
  • [27] Chilingar GV, Al-Qahtani G, Mourhatch R. The fundamentals of corrosion and scaling forpetroleum and environmental engineers. Houston: Gulf Publishing Company; 2008.
  • [28] Mackie AL, Walsh Margaret E. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res 2012;46(2):327-34. https://doi.org/10.1016/j.watres.2011.10.030. RESEARCH
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-079cafa8-c818-42c2-8290-28c7a5aed96f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.