PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoparticles as radiosensitizers in photon and hadron radiotherapy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nanocząstki jako radiouczulacze w radioterapii fotonowej i hadronowej
Języki publikacji
EN
Abstrakty
EN
The article presents the possibility of utilizing nanoparticles as radiosensitizers both in X-ray and hadron therapy. Local reinforcement of the effect of the dose can be obtained by means of gadolinium, platinum, and gold nanoparticles, which are able to intensify the emission of photoelectrons and Auger electrons after the X-ray irradiation or increase the generation of low-energy electrons during hadron therapy. Such electrons induce water radiolysis in the vicinity of nanoparticles and create radicals that damage cancer cells. In addition to the presentation of the mechanisms responsible for radiosensitizing properties of nanoparticles, selected animal, cell culture and simulation experiments are mentioned. Attention is also drawn to the most important problems, which must be solved before clinical application of nanoparticles. The broadly defined biocompatibility is the basic feature required from radiosensitizing agents injected into the patient’s body. The effective delivery of nanoparticles to the target and obtaining the proper concentration and distribution within the tumor volume present a biggest challenge.
PL
Artykuł prezentuje możliwość wykorzystania nanocząstek jako radiouczulaczy zarówno w radioterapii fotonowej jak i terapii hadronowej. Lokalne wzmocnienie efektu dawki może być uzyskane dzięki nanocząstkom gadolinu, platyny i złota. Są one zdolne do zintensyfikowania emisji fotoelektronów i elektronów Augera przy napromienieniu fotonami X albo do zwiększenia emisji niskoenergetycznych elektronów podczas terapii hadronowej. Takie elektrony indukują radiolizę wody w sąsiedztwie nanocząstek, a generowane rodniki niszczą komórki nowotworu. Oprócz omówienia mechanizmów odpowiedzialnych za radiouczulające właściwości nanocząstek, przedstawiono wybrane eksperymenty symulacyjne oraz doświadczenia na hodowlach komórkowych i zwierzętach. Zwrócono również uwagę na najważniejsze problemy, które muszą zostać rozwiązane przed zastosowaniem nanocząstek w praktyce klinicznej. Szeroko zdefiniowana biokompatybilność jest podstawową własnością, jaką muszą posiadać środki radiouczulające, wstrzykiwane pacjentowi. Wciąż dużym wyzwaniem pozostaje efektywne dostarczanie nanocząstek tak, aby uzyskać ich wymagane stężenie i równomierny rozkład w objętości nowotworu.
Wydawca
Rocznik
Strony
29--36
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Uniwersytet Adama Mickiewicza, Wydział Fizyki, Zakład Fizyki Medycznej, 61-614 Poznań, ul. Umultowska 85
Bibliografia
  • [1] W. Schlegel: New Technologies in 3D Conformal Radiation Therapy: Introduction and Overview, [w:] W. Schlegel, T. Bortfeld, A.L. Grosu (red.): New Technologies in Radiation Oncology, Springer, Berlin 2006, s.1–6.
  • [2] R. Hill, B. Healy, L. Holloway, Z. Kuncic, D. Thwaites, C. Baldock: Advances in kilovoltage x-ray beam dosimetry, Physics in Medicine and Biology, vol. 59, 2014, 183–231.
  • [3] T. Kubiak: Carbon Ion Radiotherapy - Advantages, Technical Aspects and Perspectives,[w:] C. Leroy, I. Stekl (red.) Nuclear Physics Methods and Accelerators in Biology and Medicine, Proceedings of the Sixth International Summer School, Joint Institute for Nuclear Research, Dubna, 2013, s. 44–45.
  • [4] J.K. Kim, S.J. Seo, H.T. Kim, K.H. Kim, M.H Chung, K.R. Kim, S.J. Ye: Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles, Physics in Medicine and Biology, vol. 57, 2012, s. 8309–8323.
  • [5] J.K. Kim, S.J. Seo, K.H. Kim, T.J. Kim, M.H. Chung, K.R. Kim, and T K. Yang: Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect, Nanotechnology, vol. 21, 2010, 425102.
  • [6] E. Lechtman, N. Chattopadhyay, Z. Cai, S. Mashouf, R. Reilly, J.P. Pignol: Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location, Physics in Medicine and Biology, vol. 56, 2011, s. 4631–4647.
  • [7] F. Taupin, M. Flaender, R. Delorme, T. Brochard, J.F Mayol, J. Arnaud, P. Perriat, L. Sancey, F. Lux, R.F. Barth, M. Carrière, J.L. Ravanat, H. Elleaume: Gadolinium nanoparticles and contrast agent as radiation sensitizers, Physics in Medicine and Biology, vol. 60, 2015, s. 4449–4464.
  • [8] E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Li, S. Lacombe: Gadolinium-based nanoparticles to improve the hadrontherapy performances, Nanomedicine: NBM, vol. 10, 2014, s. 1601–1608.
  • [9] C. Wälzlein, E. Scifoni, M. Krämer, M. Durante: Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons, Physics in Medicine and Biology, vol. 59, 2014, s. 1441–1458.
  • [10] K.T. Butterworth, J.A. Coulter, S. Jain, J. Forker, S.J, McMahon, G Schettino, K.M. Prise, F.J. Currell, D.G Hirst: Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy, Nanotechnology, vol. 21, 2010, 295101.
  • [11] X.D. Zhang, D. Wu, X. Shen, J. Chen, Y.M Sun, P.X. Liu, X.J. Liang: Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy, Biomaterials, vol. 33, 2012, s. 6408–6419.
  • [12] E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe: Platinum nanoparticles: a promising material for future cancer therapy, Nanotechnology, vol. 21, 2010, 85103.
  • [13] H. Ranjbar, M. Shamsaei, M.R. Ghasemi: Investigation of the dose enhancement factor of high intensity low monoenergetic X-ray radiation with labeled tissues by gold nanoparticles, Nukleonika, vol. 55(3), 2010, s. 307–312.
  • [14] K. Khoshgard, B. Hashemi, A. Arbabi, M.J. Rasaee, M. Soleimani: Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques, Physics in Medicine and Biology, vol. 59, 2014, s. 2249–2263.
  • [15] S.N. Lim, A.K. Pradhan, R.F. Barth, S.N. Nahar, R.J. Nakkula, W. Yang, A.M. Palmer, C. Turro, M. Weldon, E.H. Bell, X. Mo: Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells, Journal of Radiation Research, vol. 56, 2015, s. 77–89.
  • [16] M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang: Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions [cited 2015 Nov 3]. Available from: http://www.nist.gov/pml/data/star/
  • [17] R. Casta, J.P. Champeaux, P. Moretto-Capelle, M. Sence, P. Cafarelli: Electron and photon emissions from gold nanoparticles irradiated by X-ray photons, Journal of Nanoparticle Research, vol. 17, 2015, s. 3.
  • [18] H.W. Hou, M.E. Warkiani, B.L. Khoo, Z.R. Li, R.A. Soo, D.S. Tan, W.T. Lim, J. Han, A.A. Bhagat, C.T. Lim: Isolation and retrieval of circulating tumor cells using centrifugal forces, Scientific Reports, vol. 3, 2013, 1259.
  • [19] G.V. Miloshevsky, V.I. Tolkach, G. Shani, S. Rozin: Calculated gadolinium atomic electron energy levels and Auger electron emission probability as a function of atomic number Z, Nuclear Instruments and Methods in Physics Research B, vol. 192, 2002, s. 360–364.
  • [20] I. Miladi, M.T. Aloy, E. Armandy, P. Mowat, D. Kryza, N. Magné, O. Tillement, F. Lux, C. Billotey, M. Janier, C. Rodriguez-Lafrasse: Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomedicine: Nanotechnology, Biology and Medicine, vol. 11, 2015, s. 247–257.
  • [21] D. Pakravan, M. Ghorbani, M. Momennezhad: Tumor dose enhancement by gold nanoparticles in a 6 MV photon beam: a Monte Carlo study on the size effect of nanoparticles, Nukleonika, vol. 58, 2013, s. 275–280.
  • [22] E. Amato, A. Italiano, S. Leotta, S. Pergolizzi, L. Torrisi: Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels, Journal of X-Ray Science and Technology, vol. 21, 2013, s. 237–247.
  • [23] Y. Lin, S.J. McMahon, M. Scarpelli, H. Paganetti, J. Schuemann: Comparing gold nanoparticle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation, Physics in Medicine and Biology, vol. 59, 2014, s. 7675–7689.
  • [24] R. Berbeco, H. Korideck, W. Ngwa, R. Kumar, J. Patel, S. Sridhar, S. Johnson, B. Price, A. Kimmelman, M. Makrigiorgos: In Vitro Dose Enhancement from Gold Nanoparticles under Different Clinical MV Photon Beam Configurations, Medical Physics, vol. 39, 2012, 3900.
  • [25] T. Wolfe, D. Chatterjee, J. Lee, J.D. Grant, S. Bhattarai, R. Tailor, G. Goodrich, P. Nicolucci, S. Krishnan: Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo, Nanomedicine, vol. 11, 2015, s. 1277–1283.
  • [26] J.C. Polf, L.F. Bronk, W.H. Driessen, W. Arap, R. Pasqualini, M. Gillin: Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles, Applied Physics Letters, vol. 98, 2011, 193702.
  • [27] C. Le Sech, K. Kobayashi, N. Usami, Y. Furusawa, E. Porcel, S. Lacombe: Comment on “Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect”, Nanotechnology, vol. 23, 2012, 078001.
  • [28] G. Dollinger: Comment on “Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect”, Nanotechnology, vol. 22, 2011, 24800.
  • [29] C. Le Sech, K. Kobayashi, N. Usami, Y. Furusawa, E. Porcel, S. Lacombe: Comment on “Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles”, Applied Physics Letters, vol. 100, 2012, 026101.
  • [30] J. Kwon, K. Sutherland, T. Hashimoto, H. Date: Dose Distribution of Electrons from Gold Nanoparticles by Proton Beam Irradiation, International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, vol. 4, 2015, s. 49–53.
  • [31] A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov: Revealing the mechanism of the Low-Energy Electron Yield Enhancement from Sensitizing Nanoparticles, Physical Review Letters, vol. 114, 2015, 063401.
  • [32] T. Kubiak: The Use of Shells Made of Poly(Ethylene Glycol) and Chitosan to Ensure the Biocompatibility of Nanoparticles in Biomedical Applications, Polimery w Medycynie, vol. 44, 2014, s. 119–127.
  • [33] S.V. Jenkins, H. Qu, T. Mudalige, T.M. Ingle, R. Wang, F. Wang, P.C. Howard, J. Chen, Y. Zhang: Rapid determination of plasmonic nanoparticle agglomeration status in blood, Biomaterials, vol. 51, 2015, s. 226–237.
  • [34] Y. Köseoglu, F. Yildiz, D.K. Kim, M. Muhammed, B. Aktas: EPR studies on Na-oleate coated Fe3O4 nanoparticles, Physica Status Solidi (C), vol. 1, 2004, s. 3511–3515.
  • [35] S. Parveen, S.K. Sahoo: Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery, European Journal of Pharmacology, vol. 670, 2011, s. 372–383.
  • [36] S. Rodrigues, M. Dionisio, C.R. López, A. Grenha: Biocompatibility of Chitosan Carriers with Application in Drug Delivery, Journal of Functional Biomaterials, vol. 3, 2012, s. 615–641.
  • [37] F. Xiao, Y. Zheng, P. Cloutier, Y. He, D. Hunting, L. Sanche: On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles, Nanotechnology, vol. 22, 2011, 465101.
  • [38] M. Gilles, E. Brun, C. Sicard-Roselli: Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation, Colloids and Surfaces B, vol. 123, 2014, s. 770–777.
  • [39] S.J. Seo, J.K Jeon, E.J. Jeong, W.S. Chang, G.H Choi, J.K. Kim: Enhancement of Tumor Regression by Coulomb Nanoradiator Effect in Proton Treatment of Iron-Oxide Nanoparticle-Loaded Orthotopic Rat Glioma Model: Implication of Novel Particle Induced Radiation Therapy, Journal of Cancer Therapy, vol. 4, 2013, s. 25–32.
  • [40] D.Y Joh, L. Sun, M. Stangl, A. Al Zaki, S. Murty, P.P. Santoiemma, J.J. Davis, B.C. Baumann, M. Alonso-Basanta, D. Bhang, G.D. Kao, A. Tsourkas, J.F. Dorsey: Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization, PLOS ONE, vol. 8, 2013, e62425.
  • [41] S. Jain, D.G. Hirst, J.M. O'Sullivan: Gold nanoparticles as novel agents for cancer therapy, British Journal of Radiology, vol. 85, 2012, s. 101–113.
  • [42] H. Kobayashi, R. Watanabe, P.L. Choyke: Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?, Theranostics, vol. 4, 2013, s. 81–89.
  • [43] N. Zoabi, A. Golani-Armon, A. Zinger, M. Reshef, Z. Yaari, D. Vardi-Oknin, Z. Shatsberg, A. Shomar, J. ShainskyRoitman, A. Schroeder: The Evolution of Tumor-Targeted Drug Delivery: From the EPR Effect to Nanoswimmers, Israel Journal of Chemistry, vol. 53, 2013, s. 719–727.
  • [44] N. Chattopadhyay, Z. Cai, J.P. Pignol, B. Keller, E. Lechtman, R. Bendayan, R.M. Reilly: Design and Characterization of HER-2-Targeted Gold Nanoparticles for Enhanced X-radiation Treatment of Locally Advanced Breast Cancer, Molecular Pharmaceutics, vol. 7, 2010, s. 2194–2206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0799f4ea-89b2-4c4b-908a-726e9c0c5618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.