PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy Clustering with Multi-Constraint QoS Service Routing in Wireless Sensor Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a fuzzy logic-based, service differentiated, QoS aware routing protocol (FMSR) offering multipath routing for WSNs, with the purpose of providing a service differentiated path meant for communication between nodes, based on actual requirements. The proposed protocol initially forms a cluster by fuzzy c-means. Next, the building of a routing follows, so as to establish multiple paths between nodes through the modified QoS k-nearest neighborhood, based on different QoS constraints and on optimum shortest paths. If one node in the path fails due to lack of residual energy, bandwidth, packet loss, delay, an alternate path leading through another neighborhood node is selected for communication. Simulation results show that the proposed protocol performs better in terms of packet delivery ratio, delay, packet drop ratio and throughput compared to other existing routing protocols.
Słowa kluczowe
EN
fuzzy logic   QoS   routing   WSN  
Rocznik
Tom
Strony
31--38
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of CSE, P.D.A College of Engineering, Kalaburagi, India
  • Research Scholar, Department of CSE, P.D.A College of Engineering, Kalaburagi, India
  • Department of E&CE, P.D.A. College of Engineering, Kalaburagi, India
Bibliografia
  • [1] S. Hasan, Z. Hussain, and R. K. Singh, „A survey of wireless sensor network", Int. J. of Emerg. Technol. and Adv. Engin., vol. 3, no. 3, pp. 487-492, 2013 [Online]. Available: https://ijetae.com/_les/Volume3Issue3/IJETAE 0313 83.pdf
  • [2] M. Asif, S. Khan, R. Ahmad, M. Sohail, and D. Singh, „Quality of service of routing protocols in wireless sensor networks: A survey", IEEE Access, vol. 5, pp. 1846-1871, 2017 (doi: 10.1109/ACCESS.2017.2654356).
  • [3] V. Kadrolli and J. Agarkhed, „Soft computing routing techniques in wireless sensor network", in Proc. 2nd Int. Conf. on Adv. in Electric., Electron., Inform., Commun. and Bio-Inform. AEEICB 2016, Chennai, India, 2016, pp. 748-751 (doi: 10.1109/AEEICB.2016.7538395).
  • [4] S. Boukerche et al., „Routing protocols in ad hoc networks: A survey", Comp. Networks, vol. 55, no. 13, pp. 3032-3080, 2011 (doi: 10.1016/j.comnet.2011.05.010).
  • [5] F. Ahamad and R. Kumar, „Energy efficient region based clustering algorithm for WSN using fuzzy logic", in Proc. IEEE Int. Conf. on Recent Trends in Electron., Inform. & Commun. Technol. RTEICT 2016, Bangalore, India, 2016, pp. 1020-1024 (doi: 10.1109/RTEICT.2016.7807984)
  • [6] T. A. Muthupandian, J. G. Eanoch, and H. Robinson Yesudhas, „A survey on techniques for selection of forwarding node in wireless sensor networks", Int. J. of Adv. in Comp. and Electron. Engin., vol. 2, no. 4, pp. 24-29, 2017.
  • [7] G. Santhi and A. Nachiappan, „Fuzzy-cost based multi constrained QoS routing with mobility MANETs", Egyptian Informat. J., vol. 13, no. 1, pp. 19-25 2012 (doi: 10.1016/j.eij.2011.12.001).
  • [8] C. Intanagonwiwat, R. Govindan, and D. Estrin, „Directed diffusion: A scalable and robust communication paradigm for sensor networks", in Proc. of the 6th Ann. Int. Conf. on Mobile Comput. and Network. MobiCom'00, Boston, MA, USA, 2000, pp. 56-67 (doi: 10.1145/345910.345920).
  • [9] A. Nanda and A. K. Rath, „Mamdani fuzzy inference based hierarchical cost effective routing (MFIHR) in WSNs", in Proc. IEEE 7th Int. Adv. Comput. Conf. IACC 2017, Hyderabad, India, 2017, pp. 7-401 (doi: 10.1109/IACC.2017.0089).
  • [10] K. Singh and R. K. Singh, „An energy efficient fuzzy based adaptive routing protocol for wireless body area network", in Proc. IEEE UP Section Conf. on Elec. Comp. and Electron. UPCON 2015, Allahabad, India, 2015, pp. 1-6 (doi: 10.1109/UPCON.2015.7456680).
  • [11] S. V. Mallapur and S. R. Patil, „Fuzzy logic-based stable multipath routing protocol for mobile ad hoc networks", in Proc. Ann. IEEE India Conf. INDICON 2014, Pune, India, 2014, pp. 1-6 (doi: 10.1109/INDICON.2014.7030670)
  • [12] M. U. Bokhari, „Bokhari-SEPFL routing protocol based on fuzzy logic for WSNs", in Proc. 5th Int. Conf. on Reliab., Infocom Technol. and Optimiz. ICRITO 2016 (Trends and Future Directions), Noida, India, 2016, pp. 38-43 (doi: 10.1109/ICRITO.2016.7784920).
  • [13] S. Souiki, M. Hadjila, and M. Feham, „Fuzzy based clustering and energy efficient routing for underwater wireless sensor networks", Int. J. of Comp. Netw. & Commun. (IJCNC), vol. 7, no. 2, pp. 33-44, 2015 (doi: 10.5121/ijcnc.2015.7203).
  • [14] E. Ahvar, A. Pourmoslemi, and M. J. Piran, „FEAR: A fuzzy-based energy-aware routing protocol for wireless sensor networks", arXiv preprint arXiv:1108.2777 [Online]. Available: https://arxiv.org/ftp/ arxiv/papers/1108/1108.2777.pdf
  • [15] H. Jiang, Y. Sun, R. Sun, and H. Xu, „Fuzzy-logic-based energy optimized routing for wireless sensor networks", Int. J. of Distrib. Sensor Netw., vol. 9, no. 8, 2013 (doi: 10.1155/2013/216561).
  • [16] M. Omari, H. Abdelkarim, and B. Salem, „Optimization of energy consumption based on genetic algorithms optimization and fuzzy classification", in Proc. 2nd World Symp. on Web Appl. and Network. WSWAN 2015, Sousse, Tunisia, 2015 (doi: 10.1109/WSWAN.2015.7210317).
  • [17] F. Xia, W. Zhao, Y. Sun, and Y. C. Tian, „Fuzzy logic control based QoS management in wireless sensor/actuator networks", Sensors, vol. 7, no. 12, pp. 3179-3191, 2007 (doi: 10.3390/s7123179).
  • [18] R. V. Dharaskare and M. M. Goswami, „Intelligent multipath routing protocol for mobile ad hoc network", Int. J. of Comp. Sci. and Appl., vol. 2, 2009, pp. 135-145.
  • [19] L. Cheng et al., „QoS aware geographic opportunistic routing in wireless sensor networks", IEEE Trans. on Parallel and Distrib. Syst., vol. 25, no. 7, pp. 1864-1875 (doi: 10.1109/TPDS.2013.240).
  • [20] J. Agrakhed, G. S. Biradar, and V. D. Mytri, „Adaptiv multi constraint multipath routing protocol in wireless multimedia sensor network", in Proc. Int. Conf. on Comput. Sci., Phagwara, India, 2012, pp. 326-331 (doi: 10.1109/ICCS.2012.9).
  • [21] R. S. Oliver „Estimation of the probability density function of endto- end delays in wireless sensor networks", Tech. Rep., Technische Universität Kaiserslautern, Kaiserslauter, Germany, Jan. 2009 [Online]. Available: https://rts.eit.uni-kl.de/fileadmin/publication_files/TR09 serna oliver.pdf
  • [22] T.-S. Su, C.-H. Lin, and W.-S. Hsieh, „A novel QoS-aware routing for ad hoc networks", in Proc. of the 9th Joint Int. Conf. on Inform. Sci. JCIS 2006, Kaohsiung, Taiwan, China, 2006 (doi: 10.2991/jcis.2006.117).
  • [23] V. Rashiwal, S. Verma, and S. K. Bajpai, „QoS based power aware routing in MANETs", Int. J. of Comp. Theory and Engin., vol. 1, no. 1, pp. 49-54 (doi: 10.7763/IJCTE.2009.V1.8).
  • [24] P. Basu, N. Khan, and T. D. C. Little, „A mobility based metric for clustering in mobile ad hoc networks", in Proc. 21st Int. Conf. on Distrib. Comput. Syst. Worksh. ICDCS 2001, Mesa, AZ, USA, 2001, pp. 413-418 (doi: 10.1109/CDCS.2001.918738).
  • [25] Network Simulator [Online]. Available: https://www.isi.edu/nsnam/ns
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0799730a-b19c-4432-8c66-cb27d2ec4788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.