PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ability of localizing gradient damage to determine size effect in concrete beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the paper is to demonstrate the potential of the localizing gradient dam- age model in size effect simulations. Three different gradient activity functions for variable internal length scale are considered. Numerical simulations for an unnotched beam under three-point bending are referred to the experiment performed by Gr´egoire et al. (2013). A confrontation with the conventional gradient damage model as well as mesh sensitivity studies are also presented. It is proved that the localizing gradient damage model with differ- ent variants of the gradient activity function can reproduce the size effect quite reasonably.
Rocznik
Strony
193--206
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
Bibliografia
  • 1. Barbat G.B., Cervera M., Chiumenti M., Espinoza E., 2020, Structural size effect: Experimental, theoretical and accurate computational assessment, Engineering Structures, 213, 110555.
  • 2. Bažant Z.P., Jirásek M., 2002, Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics – ASCE, 128, 11, 1119-1149.
  • 3. Bažant Z.P., Le J.-L., 2017, Probabilistic Mechanics of Quasibrittle Structures. Strength, Life-time, and Size Effects, Cambridge University Press, Cambridge.
  • 4. Bažant Z.P., Oh B., 1983, Crack band theory for fracture of concrete, RILEM Materials and Structures, 16, 155-177.
  • 5. Bažant Z.P., Planas J., 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, New York.
  • 6. Borden M.J., 2012, Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture, Ph.D. Thesis, The University of Texas at Austin, Austin, Texas.
  • 7. Carmeliet J., 1999, Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials, Mechanics of Cohesive-Frictional Materials, 4, 1, 1–16.
  • 8. de Borst R., Verhoosel C.V., 2016, Gradient damage vs. phase-field approaches for fracture: Similarities and differences, Computer Methods in Applied Mechanics and Engineering, 312, 78-94.
  • 9. de Vree J.H.P., Brekelmans W.A.M., van Gils M.A.J., 1995, Comparison of nonlocal approaches in continuum damage mechanics, Computers anf Structures, 55, 4, 581-588.
  • 10. Feng D.-C., Wu J.-Y., 2018, Phase-field regularized cohesive zone model (CZM) and size effect of concrete, Engineering Fracture Mechanics, 197, 66-70.
  • 11. García-Álvarez V.O., Gettu R., Carol I., 2012, Analysis of mixed-mode fracture in concrete using interface elements and a cohesive crack model, Sadhana, 37, 1, 187-205.
  • 12. Geers M.G.D., 1997, Experimental analysis and computational modelling of damage and fracture, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven.
  • 13. Grégoire D., Rojas-Solano L.B., Pijaudier-Cabot G., 2013, Failure and size effect for notched and unnotched concrete beams, International Journal for Numerical and Analytical Methods in Geomechanics, 37, 10, 1434-1452.
  • 14. Hoover C.G., Bažant Z.P., Vorel J., Wendner R., Hubler M.H., 2013, Comprehensive concrete fracture tests: Description and results, Engineering Fracture Mechanics, 114, 92-103.
  • 15. Hordijk D.A., 1991, Local approach to fatigue of concrete, Ph.D. Thesis, Delft University of Technology, Delft.
  • 16. Mazars J., Pijaudier-Cabot G., 1989, Continuum damage theory – application to concrete, Journal of Engineering Mechanics – ASCE, 115, 2, 345-365.
  • 17. Negi A., Singh U., Kumar S., 2021, Structural size effect in concrete using a micromorphic stress-based localizing gradient damage model, Engineering Fracture Mechanics, 243, 107511.
  • 18. Peerlings R.H.J., de Borst R., Brekelmans W.A.M., de Vree J.H.P., 1996, Gradient enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering, 39, 19, 3391-3403.
  • 19. Peerlings R.H.J., Massart T.J., Geers M.G.D., 2004, A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking, Computer Methods in Applied Mechanics and Engineering, 193, 30, 3403-3417.
  • 20. Poh L.H., Sun G., 2017, Localizing gradient damage model with decreasing interaction, International Journal for Numerical Methods in Engineering, 110, 6, 503-522.
  • 21. Saroukhani S., Vafadari R., Simone A., 2013, A simplified implementation of a gradient-enhanced damage model with transient length scale effects, Computational Mechanics, 51, 6, 899-909.
  • 22. Taylor R., 2001, FEAP – A Finite Element Analysis Program, Version 7.4, User Manual, University of California at Berkeley, Berkeley.
  • 23. Wang J., Poh L.H., Guo X., 2022, Mixed mode fracture of geometrically similar FRUHPC notched beams with the localizing gradient damage model, Engineering Fracture Mechanics, 275, 108843.
  • 24. Wosatko A., 2022, Survey of localizing gradient damage in static and dynamic tension of concrete, Materials, 15, 5, 1875.
  • 25. Zhang Y., Shedbale A.S., Gan Y., Moon J., Poh L.H., 2021, Size effect analysis of quasi-brittle fracture with localizing gradient damage model, International Journal of Damage Mechanics, 30, 7, 1012-1035.
  • 26. Zhao D., Yin B., Tarachandani S., Kaliske M., 2023, A modified cap plasticity description coupled with a localizing gradient-enahnced approach for concrete failure modeling, Computational Mechanics, 72, 787-801.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-079374c0-ad77-4277-a40c-bb10d64d8e7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.