PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An atomic scale investigation of the adsorption of sodium oleate on Ca2+ activated quartz surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the surface properties and flotation behavior of quartz with NaOl as a collector in the presence of Ca2+ ions were investigated using density functional theory (DFT) calculations in conjunction with flotation tests, adsorption experiments, zeta potential measurements, and solution chemistry calculations. The results of the flotation and adsorption tests proved that Ca2+ promoted the flotation recovery and the adsorption density of sodium oleate on quartz at pH > 8. Zeta potential analyses and solution chemistry calculations demonstrated that Ca(OH)+ was the functional species which activated quartz. DFT calculations indicated that O atoms dominated the quartz (101) surface, and great electrostatic repulsion and space resistance existed between the surface and oleate anion.The spontaneous adsorption of H2O and OH- on the (101) surface made quartz surfaces hydrated and hydroxylated, and resulted in the hydrophilicity of quartz. The adsorption of Ca(OH)+ on quartz (101) surface was more favorable and able to repulse the water film, which decreased the electrostatic repulsion and space resistance, and further facilitated the adsorption of oleate anion. During the activating and collecting adsorption processes, electron transition occurred along the O1—Ca—O2 path, implying Ca(OH)+ acted as an intermediary and electron donator in the activation process.
Słowa kluczowe
Rocznik
Strony
426--436
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • BAG, B., DAS, B., MISHRA, B. K., 2011. Geometrical optimization of xanthate collectors with copper ions and their responseto flotation. Miner. Eng. 24, 760-765.
  • BANDURA, A. V., KUBICKI, J. D., SOFO, J. O., 2011. Periodic density functional theory study of water adsorption on the α-quartz (101) surface. J. Phys. Chem. C. 115, 5756-5766.
  • CAO, Z., ZHANG, Y., CAO, Y., 2013. Reverse flotation of quartz from magnetite ore with modified sodium oleate. Min. Proc. Ext. Met. Rev. 34, 320–330.
  • EL-SALMAWY, M. S., NAKAHIRO, Y., WAKAMATSU, T., 1993. The role of alkaline earth cations in flotation separation of quartz from feldspar. Miner. Eng. 6, 1231-1243.
  • FORNASIERO, D., RALSTON, J., 2005. Cu(II) and Ni(II) activation in the flotation of quartz,lizardite and chlorite. Int. J. Miner. Process. 76, 75-81.
  • FUERSTENAU, M. C., JAMESON, G., YOON, R. H., 2007. Froth flotation-a century of innovation. Society of mining, metallurgy, and exploration. Inc 484-486.
  • GAO, Z.Y., XIE, L., CUI, X., HU, Y.H., SUN, W., ZENG, H.B., 2018a. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals. Langmuir 34, 2511-2521.
  • GAO, Y.S., GAO, Z.Y., SUN, W., YIN, Z.G., WANG, J.J., HU Y.H.,2018b. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 512, 39-46.
  • GONG, G. C., HAN, Y. X., LIU, J., ZHU, Y. M., LI, Y. F., YUAN, S., 2017. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite (110) surface by molecular modeling. Miner. 7, 181.
  • GUAN, Q., HU, Y., TANG, H., GAO, Z., SUN, W., 2018. Preparation of α-CaSO4· ½H2O with tunable morphology from flue gas desulphurization gypsum using malic acid as modifier: A theoretical and experimental study. J. Colloid Interface Sci. 530, 292-301.
  • GUO, W. D., ZHU, Y. M., HAN, Y. X., WEI, Y. H., 2018. Effects and activation mechanism of calcium ion on the flotation of quartz with fatty acid collector. J. Northeast. Univ. 39, 409-415. (in Chinese)
  • GUNEY, A., ÖZDILEK, C., KANGAL, M.O., BURAT, F., 2015. Flotation characterization of PET and PVC in the presence of different plasticizers. Sep. Purif. Technol. 151, 47–56.
  • JIN, J. X., GAO, H. M., CHEN, X. M., PENG, Y. J., 2016. The separation of kyanite from quartz by flotation at acidic pH Miner. Eng. 92, 221-228.
  • KOU, J., XU, S., SUN, T., SUN, C., GUO, Y., WANG, C., 2016. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. Int. J. Miner. Process. 154, 24-34.
  • LI, C., GAO Z., 2018. Tune surface physicochemical property of fluorite particles by regulating the exposure degree of crystal surfaces. Miner. Eng. 128, 123-132.
  • LI, C., GAO Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol. 322, 386-392.
  • LIU, J., GONG, G. C., HAN, Y. X., ZHU, Y. M., 2017. New insights into the adsorption of oleate on cassiterite: A DFT study. Miner. 7, 236.
  • LIU, W. B., LIU, W. G., WEI, D. Z., LI, M. Y., ZHAO, Q., XU, S. C., 2017. Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz. Chem. Eng. J. 309, 63-69.
  • LUO, X. M., WANG, Y. F., WEN, S. M., MA, M. Z., SUN, C. Y., YIN, W. Z., MA, Y. Q., 2016. Effect of carbonate minerals on quartz flotation behavior underconditions of reverse anionic flotation of iron ores. Int. J. Miner. Process. 152, 1-6.
  • MILLER, J. D., WANG, X., JIN, J., SHRIMALI, K., 2016. Interfacial water structure and the wetting of mineral surfaces. Int. J. Miner. Process. 156, 62-68.
  • OZKAN, A., UCBEYIAY, H., DUZYOL, S., 2009. Comparison of stages in oil agglomeration process of quartz with sodium oleate in the presence of Ca(II) and Mg(II) ions. J. Colloid. Interf. Sci. 329, 81-88.
  • PENG, H. Q., LUO, W., WU, D., BIE, X. X., SHAO, H., JIAO, W. Y., LIU, Y. K., 2017. Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector. Miner. 7, 108.
  • POORNI, S., NATARAJAN, K.A., 2013. Microbially induced selective flocculation of hematite from kaolinite. Int. J. Miner. Process. 125, 92–100.
  • RATH, S. S., SAHOO, H., DAS, B., MISHRA, B. K., 2014. Density functional calculations of amines on the (1 0 1) face of quartz. Miner. Eng. 69, 57-64.
  • RATH, S.S., SINHA, N., SAHOO, H., DAS, B., MISHRA, B.K., 2014. Molecular modeling studies of oleate adsorption on iron oxides. Appl. Surf. Sci. 295, 115-122.
  • SCHLEGEL, M.L., NAGY, K.L., FENTER, P., STURCHIO, N.C., 2002. Atomic-scale structure of the quartz (10(1)overbar-0)- and (10(1)over-bar-1)-water interfaces. Geochim. Cosmochim. Ac. 66, A679-A679.
  • TAN, X., HE, F. Y., SHANG, Y. B., YIN, W. Z., 2016. Flotation behavior and adsorption mechanism of (1-hydroxy-2- methyl-2-octenyl) phosphonic acid to cassiterite. Trans. Nonferrous Met. Soc. China. 26, 2469-2478.
  • TIAN, M., GAO, Z., SUN, W., HAN, H., SUN, L., HU, Y., 2018. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. J. Colloid Interface Sci. 529, 150-160.
  • TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion / benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner. Eng. 113, 68-70.
  • WANG, D. Z., 1988. Chemistry of flotation solutions. Hunan Science and Technology Press, Changsha, P. 138.
  • XU, L. H., HU, Y. H., Wu, H. Q., Tian, J., Liu, J., Gao, Z. Y, WANG, L., 2016. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Sep. Purif. Technol. 169, 33-42.
  • YE, H., MATSUOKA, I., 1993. Reverse flotation of fine quartz from dickite with oleate. Int. J. Miner. Process. 40, 123-136.
  • YIN, W. Z., LI, D., LUO, X. M., YAO, J., SUN, Q. Y., 2016. Effect and mechanism of siderite on reverse flotation of hematite. Int. J. Min. Met. Mater. 23, 373-379.
  • ZHANG, J., WANG, W. Q., LIU, J., HUANG, Y., FENG, Q. M., ZHAO, H., 2014. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals. Miner. Eng. 61, 16-22.
  • ZHAO, G., ZHONG, H., QIU, X. Y., WANG, S., GAO, Y. D., DAI, Z. L., HUANG, J., LIU, G. Y., 2013. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation. Miner. Eng. 49, 54-60.
  • ZHU, Y. M., LUO, B. B., SUN, C. Y., LIU, J., SUN, H. T., LI, Y. J., HAN, Y. X., 2016. Density functional theory study of a-Bromolauric acid adsorption on the α-quartz (101) surface. Miner. Eng. 92, 72-77.
  • ZHURVALEV, L. T., 2000. The surface chemistry of amorphous silica. zhuravlev model. Colloid. Surface. A. 173, 1-38
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07906e85-c762-4bae-9235-7449db6d3e1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.