Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The environmental risk classification of the metal relics is usually determined by the corrosion rate of the metal but it is difficult to monitor the deterioration of the metal relics directly. A strong relationship exists between indoor exposure, the air quality classification of atmospheric corrosion, and the actual deterioration of metal relics. The copper-silver hanging plate method requires a long period of environmental exposure and has certain hysteresis, thus reflecting the current environmental quality of the museum in real time poses some difficulties. However, the application of the environmental reactivity monitor (ERMs) based on the piezoelectric effect can solve the above problems. The invented quartz crystal microbalance (QCM) reactivity monitoring device is applied to study the influence of temperature and humidity on the corrosion of the bronze-simulated materials and the relationship between the corrosion depth rate of the bronze-simulated materials and the frequency change of the crystal oscillator. Then, the recommended classification range of temperature and humidity and the airquality classification standards for the preservation environment of the bronze cultural relics in museums are proposed.
Czasopismo
Rocznik
Tom
Strony
45--59
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237
autor
- Key Scientific Research Base of Museum Environment, State Administration for Cultural Heritage, Shanghai Museum, Shanghai 200050
autor
- Key Scientific Research Base of Museum Environment, State Administration for Cultural Heritage, Shanghai Museum, Shanghai 200050
autor
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237
autor
- Key Scientific Research Base of Museum Environment, State Administration for Cultural Heritage, Shanghai Museum, Shanghai 200050
autor
- School of Resources and Environmental Engineering, East China University of Science and Technology,Shanghai 200237,
Bibliografia
- [1] KAREEM K., SULTAN S., HE L., Fabrication, microstructure and corrosive behavior of different metallographic tin-leaded bronze alloys. Part II. Chemical corrosive behavior and patina of tin-leaded bronze alloys, Mater. Chem. Phys., 2016, 169, 158–172. DOI: 10.1016/j.matchemphys.2015.11.044.
- [2] KONG D.C., DONG C.F., FANG Y.H., Copper corrosion in hot and dry atmosphere environment in Turpan, China, Trans. Nonferr. Met. Soc. China, 2016, 16, 1721–1728. DOI: 10.1016/S1003-6326(16)64281-4.
- [3] SHIRI M.,REZAKHANI D., Estimated and stationary atmospheric corrosion rate of carbon steel, galvanized steel, copper and aluminum in Iran, Met. Mater. Trans. A, 2019, 51 (1), 342–367. DOI: 10.1007/s11661 -019-05509-1.
- [4] GIBSON L.T., COOKSEY B.G., LITTLEJOHN D., TENNENT N.H., A diffusion tube sampler for the determination of acetic acid and formic acid vapours in museum cabinets, Anal. Chim. Acta, 1997, 341, 11–19. DOI: 10.1016/S0003-2670(96)00567-3.
- [5] PROSEK T., TAUBE M., DUBOIS F., Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze, and iron in model indoor atmospheres containing short- -chain volatile carboxylic acids, Corr. Sci., 2014, 87, 376–382. DOI: 10.1016/j.corsci.2014.06.047.
- [6] TSUCHIYAMA H.,LAKEMAN S., Using quartz crystal microbalance to provide real-time process monitoring, International Symposium on Semiconductor Manufacturing (ISSM), 2020. DOI: 10.1109/ISSM 51728. 2020.9377515.
- [7] CHRIS M., Air quality standards for preservation environments. Considerations for monitoring and classification of gaseous pollutants, PAPYRUS, 2010–2011, 11, 3.
- [8] SHOWCASES O.C,CHIARA R.,TOMMASO P., GIANCARLO C., PETER H., Risk assessment and preservative measures for volatile organic compounds in museum, Stud. Cons., 2018, 63. DOI: 10.1080/00393630. 2018.1504454.
- [9] LI K., CHEN Z.Y., LI J.R., Corrosion mechanism of copper immersed in ammonium sulfate solution, Mater. Corr., 2018, 69, 1597–1608. DOI: 10.1002/maco.201810222.
- [10] MORCILLO M., ALMEIDA E., MARROCOS M., Atmospheric corrosion of copper in Ibero-America, Corr., 2001, 57 (11), 967–980. DOI: 10.5006/1.3290321.
- [11] PICCIOCHI R.,RAMOS A.C.,MENDONCA M.H., Influence of the environment on the atmospheric corrosion of bronze, J. Appl. Electrochem., 2004, 34, 989–995. DOI: 10.1023/B:JACH.0000042667.84920.e2.
- [12] XIN J.P., CHEN Z.Y., HOU B.R., Study of initial corrosion behaviors of pure copper under simulated marine atmosphere, Adv. Mater. Res., 2012, 531, 51–54. DOI: 10.4028/www.scientific.net/AMR.531.51.
- [13] TRIANA-ROMEROA A.A., GALVÁN-MARTÍNEZA R., MEJÍA-SÁNCHEZ E., Electrochemical study of the protective capacity of artificial patina of CuSO4 exposed in an urban-marine atmosphere, ECS Trans., 2021, 101 (1), 351–358. DOI: 10.1149/10101.0351ecst.
- [14] YI C.X, DU X.Q., YANG Y.M., Study on the initial atmospheric corrosion behavior of copper in chloridecontaining environments, Int. J. Electrochem. Sci., 2017, 12 (5), 3597–3613. DOI: 10.20964 /2017.05.18.
- [15] TSUCHIYAMA H., LAKEMAN S., Using quartz crystal microbalance to provide real-time process monitoring, International Symposium on Semiconductor Manufacturing (ISSM), 2020. DOI: 10.1109 /ISSM 51728.2020.9377515.
- [16] LU Y., WEI Q., CHENG Y., Investigation of scale inhibition mechanism by electrochemical quartz crystal microbalance, Int. J. Electrochem. Sci., 2021, 16. DOI: https://doi.org/10.20964/2021.05.38.
- [17] SAMIE F., TIDBLAD J., KUCERA V., Atmospheric corrosion effects of HNO3. Influence of temperature and relative humidity on laboratory-exposed copper, Atm. Environ., 2007, 41 (7), 1374–1382. DOI: 10.1016/j.atmosenv.2006.10.018.
- [18] YU X.Y., WANG Z.H., LU Z.H., In situ investigation of atmospheric corrosion behavior of copper under thin electrolyte layer and static magnetic field, Microelectron. Rel., 2020, 108, 113630. DOI: 10.1016/j.microrel.2020.113630.
- [19] LIU H.G., CAO F.Y., SONG G.L., Review of the atmospheric corrosion of magnesium alloys, J. Mater. Sci. Technol., 2019, 35 (9), 2003–2016. DOI: 10.1016/j.jmst.2019.05.001.
- [20] NING L., GUOHUA W., XUESONG B., MINGHU R., XIANBIN C., JING N., Effect of quartz crystal thermal stress on its performance in active temperature control quartz crystal microbalance dew point sensors, Sens. Actuators B: Chem., 2022, 369 (15), 132283. DOI: 10.1016/j.snb.2022.132283.
- [21] WUJUN Z., XIAOYU Z., YUZHONG L., Review of flue gas acid dew-point and related low temperature corrosion, J. En. Inst., 2020, 93 (4), 1666–1677. DOI: 10.1016/j.joei.2020.02.004.
- [22] Purafil. Application guide for museum and archive, USA: Purafil, Incorporated, 1998.
- [23] FENG N., Overview of preventive conservation and the museum environment in China, Stud. Conserv., 2016, 61 (Supp1.), 18–22. DOI: 10.1080/00393630.2016.1191795.
- [24] SIANI A.M., FRASCA F., MICHELE M.D., Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums, Environ. Sci. Poll. Res., 2018, 25 (29), 28787–28797. DOI: 10.1007/s11356-018-2021-3.
- [25] SHARIF-ASKARI H., ABU-HIJLEH B., Review of museums’ indoor environment conditions studies and guidelines and their impact on the museums' artifacts and energy consumption, Build. Environ., 2018, 143, 186–195. DOI: https://doi.org/10.1016/j.buildenv.2018.07.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07884d3a-3d11-438e-967f-7c3ea8bf5dbf