PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prestack AVO inversion for brittleness index of shale based on BI_Zoeppritz equation and NSGA II

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As one of the evaluation characteristics of shale sweet spots, the brittleness index (BI) of shale formations is of great sig nifcance in predicting the range of sweet spots, and guiding hydraulic fracturing. Based on the three elastic parameters of P-wave velocity (VP), S-wave velocity (VS) and density obtained by conventional prestack AVO inversion, BI can be calcu lated indirectly using the Rickman formula. However, the conventional AVO inversion based on Zoeppritz approximation assumes that incident angle is small and elastic parameters change slowly, which afects the inversion accuracy of the three elastic parameters. Additionally, using these three elastic parameters to obtain BI indirectly also leads to cumulative errors of the inversion results. Therefore, we propose an inversion method based on BI_Zoeppritz equation to directly estimate VP, VS and BI. The BI_Zoeppritz equation is an exact Zoeppritz equation for BI, which is used as the forward operator for the proposed method. The multi-objective function of the inversion method is optimized by a fast nondominated sorting genetic algorithm (NSGA II). An initial model and an optimized search window are used to improve the inversion accuracy. The test results of model data and actual data reveal that this method can directly obtain the BI with high precision. In addition, the stability and noise immunity of the proposed method are verifed by the seismic data with random noise.
Czasopismo
Rocznik
Strony
1067--1082
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
  • School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
  • Sinopec Geophysical Research Institute, Nanjing 210014, China
autor
  • Sinopec Exploration and Production Research Institute, Beijing 100083, China
autor
  • School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
Bibliografia
  • 1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W H Freeman and Co, Cambridge, pp 144–154
  • 2. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148
  • 3. Deb K, Agrawal S (1999) A niched-penalty approach for constraint handling in genetic algorithms. In: International conference on artificial neural networks and genetic algorithms, pp 235 − 243
  • 4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
  • 5. Fang Y, Zhang FQ, Wang YC (2016) Generalized linear joint PP–PS inversion based on two constraints. Appl Geophys 13(1):103–115
  • 6. Fu H, Wang X, Zhang L, Gao R, Li Z, Zhu X, Xu W, Li Q, Xu T (2015) Geological controls on artificial fracture networks in continental shale and its fracability evaluation: a case study in the Yanchang Formation, Ordos Basin, China. J Nat Gas Sci Eng 26:1285–1293
  • 7. Gholami R, Rasouli V, Sarmadivaleh M, Minaeian V, Fakhari N (2016) Brittleness of gas shale reservoirs: a case study from the north Perth basin, Australia. J Nat Gas Sci Eng 33:1259–1277
  • 8. Glorioso JC, Rattia A (2012) Unconventional reservoirs: basic petrophysical concepts for shale gas. In: SPE/EAGE European unconventional resources conference & exhibition-from potential to production
  • 9. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston
  • 10. Grigg M (2004) Emphasis on mineralogy and basin stress for gas shale exploration. In: SPE meeting on gas shale technology exchange
  • 11. Guo TL, Zhang HR (2014) Formation and enrichment mode of Jiaoshiba shale gasfield, Sichuan Basin. Petrol Explor Dev 41(1):28–37
  • 12. Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91(4):475–499
  • 13. Jia CZ (2017) Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory. Petrol Explor Dev 44(1):1–10
  • 14. Jin X, Shah SN, Roegiers JC, Zhang B (2014a) Fracability evaluation in shale reservoirs—an integrated petrophysics and geomechanics approach. In: Proceedings of the SPE hydraulic fracturing technology conference
  • 15. Jin X, Shah SN, Truax JA, Roegiers JC (2014b) A practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs. In: SPE annual technical conference and exhibition
  • 16. Li T, Mallick S (2015) Multicomponent, multi-azimuth prestack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm. Geophys J Int 200(2):1134–1152
  • 17. Li JN, Wang SX, Dong CH, Yuan SY, Wang JB (2016) Study on frequency-dependent characteristics of spherical-wave PP reflection coefficient. Chin J Geophys 59(10):3810–3819
  • 18. Liu W, Wang YC (2018) Multicomponent prestack joint AVO inversion based on exact Zoeppritz equation. J Appl Geophys 159:69–82. https://doi.org/10.1016/j.jappgeo.2018.07.017
  • 19. Mcglade C, Speirs J, Sorrell S (2013) Unconventional gas—a review of regional and global resource estimates. Energy 55(1):571–584
  • 20. Ostrander WJ (1984) Plane wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics 49(10):1637–1648
  • 21. Pei P, Ling K, Hou X, Nordeng S, Johnson S (2016) Brittleness investigation of producing units in Three Forks and Bakken formations, Williston basin. J Nat Gas Sci Eng 32:512–520
  • 22. Rickman R, Mullen MJ, Petre JE, Grieser WV, Kundert D (2008) A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: Proceedings of the SPE annual technical conference and exhibition. Society of Petroleum Engineers
  • 23. Virieux J, Operto S (2009) An overview of full waveform inversion in exploration geophysics. Geophysics 74(6):WCC1–WCC26
  • 24. Wang FP, Gale JF (2009) Screening criteria for shale-gas systems. Gulf Coast Assoc Geol Soc Trans 59:779–793
  • 25. Xie W, Wang YC, Liu XQ, Bi CC, Zhang FQ, Fang Y, Tahir A (2019) Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM. Appl Geophys 16(1):64–76
  • 26. Yin XY, Liu XJ, Zong ZY (2015) Pre-stack basis pursuit seismic inversion for brittleness of shale. Petrol Sci 12(4):618–627
  • 27. Yuan SY, Liu Y, Zhang Z, Luo CM, Wang SX (2019) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16(1):140–144
  • 28. Zhang D, Ranjith PG, Perera MSA (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Petrol Sci Eng 143:158–170
  • 29. Zoeppritz K (1919) On the reflection and propagation of seismic waves. Gott Nachr I:66–84
  • 30. Zong ZY, Yin XY, Wu GC (2013) Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio. Geophysics 78(6):N35–N42
  • 31. Zou CN, Yang Z, Zhang GS, Hou LH, Zhu RK, Tao SZ, Yuan XJ, Dong DZ, Wang YM, Guo QL, Wang L, Bi HB, Li DH, Wu N (2014) Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance. Petrol Explor Dev 41(1):14–30
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07884596-c8e7-4047-ade1-1575b1a1aebb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.