Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider reflected backward stochastic differential equations, with two barriers, defined on probability spaces equipped with filtration satisfying only the usual assumptions of right-continuity and completeness. As for barriers, we assume that there are càdlàg processes of class D that are completely separated. We prove the existence and uniqueness of solutions for an integrable final condition and an integrable monotone generator. An application to the zero-sum Dynkin game is given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
199--218
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
- [1] J. S. Cvitanić and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Ann. Probab. 24 (4) (1996), pp. 2024-2056.
- [2] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, North-Holland, Amsterdam-New York 1978.
- [3] A. Falkowski, Stochastic differential equations with respect to processes of finite p-variation (in Polish), PhD thesis, Nicolaus Copernicus University, 2015.
- [4] S. Hamadène and M. Hassani, BSDEs with two reflecting barriers: The general result, Probab. Theory Related Fields 132 (2) (2005), pp. 237-264.
- [5] S. Hamadène, M. Hassani, and Y. Ouknine, Backward SDEs with two rcll reflecting barriers without Mokobodski’s hypothesis, Bull. Sci. Math. 134 (8) (2010), pp. 874-899.
- [6] S. Hamadène and H. Wang, BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game, Stochastic Process. Appl. 119 (9) (2009), pp. 2881-2912.
- [7] I. Hassairi, Existence and uniqueness for D-solutions of reflected BSDEs with two barriers without Mokobodzki’s condition, Commun. Pure Appl. Anal. 15 (4) (2016), pp. 1139-1156.
- [8] T. Klimsiak, Reflected BSDEs on filtered probability spaces, Stochastic Process. Appl. 125 (11) (2015), pp. 4204-4241.
- [9] T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data, J. Funct. Anal. 265 (6) (2013), pp. 890-925.
- [10] T. Klimsiak and A. Rozkosz, Obstacle problem for semilinear parabolic equations with measure data, J. Evol. Equ. 15 (2) (2015), pp. 457-491.
- [11] T. Klimsiak and A. Rozkosz, Semilinear elliptic equations with measure data and quasi-regular Dirichlet forms, Colloq. Math. 145 (1) (2016), pp. 35-67.
- [12] J.-P. Lepeltier and M. Xu, Reflected backward stochastic differential equations with two RCLL barriers, ESAIM Probab. Stat. 11 (2007), pp. 3-22.
- [13] R. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York 2001.
- [14] Ł. Stettner, On a general zero-sum stochastic game with optimal stopping, Probab. Math. Statist. 3 (1) (1983), pp. 103-112.
- [15] J. Zabczyk, Stopping games for symmetric Markov processes, Probab. Math. Statist. 4 (2) (1984), pp. 185-196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-078745b1-46d8-474c-af51-7b8d3bb91d65