Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper focuses on the numerical modeling of the solidification process, with particular emphasis on the key physical phenomenon of heat transfer within the mold-casting system. This process is influenced by the presence of a gaseous gap, which introduces thermal resistance at the interface and affects the solidification rate. The numerical model is developed using the Finite Element Method (FEM), with separate spatial discretizations for both the casting and the mold. Additionally, the thermal expansion of these regions, caused by temperature-dependent volume changes, is accounted for. The model utilizes two distinct meshes to compute the evolving temperature fields. Heat exchange between the cast- ing and the mold is governed by boundary conditions linking the two regions. The solution is computed incrementally, with each region being solved independently at each time step. This paper describes the main assumptions of the mathematical and numerical models and presents the comparison of results of three simulation variants carried out using a custom- -built program.
Rocznik
Tom
Strony
69--77
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
autor
- Department of Mechanics and Fundamentals of Machine Design, Czestochowa University of Technology, Czestochowa, Poland
autor
- Department of Mechanics and Fundamentals of Machine Design, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
- [1] Suliga, M., Szota, P., & Mróz, S. (2017). Simulation and measurement of temperature in high speed drawing process of steel wires. Computer Methods in Materials Science, 17(1), 69-75. DOI: 10.7494/cmms.2017.1.0577.
- [2] Nishida, Y., Droste, W., & Engler, S. (1986). The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metallurgical Transactions B, 17, 833-844.
- [3] Florio, B.J., Vynnycky, M., Mitchell, S.L., & O’Brien, S.B.G. (2015). Mould-taper asymptotics and air gap formation in continuous casting. Applied Mathematics and Computation, 268, 1122-1139. DOI: 10.1016/j.amc.2015.07.011.
- [4] Mortensen, D., Henriksen, B.R., M’Hamdi, M., & Fjær, H.G. (2016). Coupled modelling of air-gap formation and surface exudation during extrusion ingot DC-casting. in: Grandfield, J.F., Eskin, D.G. (eds). Essential Readings in Light Metals. Springer, Cham. DOI: 10.1007/978-3-31948228-6_101.
- [5] Zeng, Y.D., Yao, Q.H., & Wang, X. (2017). The effect of air gap between casting and watercooled mold on interface heat transfer coefficient. Materials Science Forum, 893, 174-180, DOI: 10.4028/www.scientific.net/MSF.893.174.
- [6] Ahmadein, M., Pustal, B., Wolff, N., & Bührig-Polaczek, A. (2017). Determination and verification of the gap dependent heat transfer coefficient during permanent mold casting of A356 aluminum alloy. Material Science & Engineering Technology, 48(12), 1249-1256, DOI: 10.1002/mawe.201 700153.
- [7] Xu, J., Kang, J., Zheng, L., Mao, W., & Wang, J. (2022). Numerical simulation of the directional solidification process with multi-shell mold being gradually immersed in water. Journal of Materials Research and Technology, 19, 2705-2716. DOI: 10.1016/j.jmrt.2022.06.037.
- [8] Li, W., Li, L., Geng, Y., Zang, X., Jing, Y., Li, D., & Thomas, B.G. (2021). Air gap measurement during steel-ingot casting and its effect on interfacial heat transfer. Metallurgical and Materials Transactions B, 52, 2224-2238. DOI: 10.1007/s11663-021-02152-3.
- [9] Gowsalya, L.A., & Afshan, M.E. (2021). Heat transfer studies on solidification of casting process. in: Casting Processes and Modelling of Metallic Materials. DOI: 10.5772/intechopen.95371.
- [10] Węgrzyn-Skrzypczak, E., & Skrzypczak, T. (2024). Numerical modeling of the casting solidification process in a mold taking into account the influence of an air gap with variable width. Journal of Applied Mathematics and Computational Mechanics, 23(2), 117-128. DOI: 10.17512/ jamcm.2024.2.10.
- [11] Ablaoui, El M., Malendowski, M., Szymkuc, W., & Pozorski, Z. (2023). Determination of thermal properties of mineral wool required for the safety analysis of sandwich panels subjected to fire loads. Materials, 16(17), 5852-1 – 5852-18. DOI: 10.3390/ma16175852.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-077f5f37-d387-4960-a314-cdff9aa38b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.