PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Usage of deep learning in recent applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Deep learning is a predominant branch in machine learning, which is inspired by the operation of the human biological brain in processing information and capturing insights. Machine learning evolved to deep learning, which helps to reduce the involvement of an expert. In machine learning, the performance depends on what the expert extracts manner features, but deep neural networks are self-capable for extracting features. Design/methodology/approach: Deep learning performs well with a large amount of data than traditional machine learning algorithms, and also deep neural networks can give better results with different kinds of unstructured data. Findings: Deep learning is an inevitable approach in real-world applications such as computer vision where information from the visual world is extracted, in the field of natural language processing involving analyzing and understanding human languages in its meaningful way, in the medical area for diagnosing and detection, in the forecasting of weather and other natural processes, in field of cybersecurity to provide a continuous functioning for computer systems and network from attack or harm, in field of navigation and so on. Practical implications: Due to these advantages, deep learning algorithms are applied to a variety of complex tasks. With the help of deep learning, the tasks that had been said as unachievable can be solved. Originality/value: This paper describes the brief study of the real-world application problems domain with deep learning solutions.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Department of Computer Science and Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal, 462003, India
Bibliografia
  • [1] A. Dubey, A. Rasool, Efficient technique of microarray missing data imputation using clustering and weighted nearest neighbour, Scientific Reports 11 (2021) 24297. DOI: https://doi.org/10.1038/s41598-021-03438-x
  • [2] W. Jiang, Applications of deep learning in stock market prediction: Recent progress, Expert Systems with Applications 184 (2021) 115537. DOI: https://doi.org/10.1016/j.eswa.2021.115537
  • [3] N.O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G.V. Hernandez, L. Krpalkova, D. Riordan, J. Walsh, Deep Learning vs. Traditional Computer Vision, in: K. Arai, S. Kapoor (eds), Advances in Computer Vision, CVC 2019, Advances in Intelligent Systems and Computing, vol. 943, Springer, Cham, 128-144. DOI: https://doi.org/10.1007/978-3-030-17795-9_10
  • [4] A. Khan, A. Sohail, U. Zahoora, A.S. Qureshi, A Survey of the Recent Architectures of Deep Convolutional Neural Networks, Artificial Intelligence Review 53 (2020) 5455-5516. DOI: https://doi.org/10.1007/s10462-020-09825-6
  • [5] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.Y. Chang, T. Sainath, Deep Learning for Audio Signal Processing, IEEE Journal of Selected Topics in Signal Processing 13/2 (2019) 206-219. DOI: https://doi.org/10.1109/JSTSP.2019.2908700
  • [6] M. Altalak, M.U. Ammad, A. Alajmi, A. Rizg, Smart Agriculture Applications Using Deep Learning Technologies: A Survey, Applied Sciences 12/12 (2022) 5919. DOI: https://doi.org/10.3390/app12125919
  • [7] S. Kuutti, R. Bowden, Y. Jin, P. Barber, S. Fallah, A Survey of Deep Learning Applications to Autonomous Vehicle Control, IEEE Transactions on Intelligent Transportation Systems 22/2 (2021) 712-733. DOI: https://doi.org/10.1109/TITS.2019.2962338
  • [8] N. Bhaskar, M. Suchetha, A Deep Learning-based System for Automated Sensing of Chronic Kidney, IEEE Sensors Letters 3/10 (2019) 7001904. DOI: https://doi.org/10.1109/LSENS.2019.2942145
  • [9] P. Celec, L. Tothova, K. Sebekova, L. Podracka, P. Boor, Salivary markers of kidney function-potentials and limitations, Clinica Chimica Acta 453 (2016) 28- 37. DOI: https://doi.org/10.1016/j.cca.2015.11.028
  • [10] A. Fenwick, The global burden of neglected tropical diseases, Public Health 126/3 (2012) 233-236. DOI: https://doi.org/10.1016/j.puhe.2011.11.015
  • [11] J.Y. He, X. Wu, Y.G. Jiang, Q. Peng, R. Jain, Hookworm Detection in Wireless Capsule Endoscopy Images with Deep Learning, IEEE Transactions on Image Processing 27/5 (2018) 2379-2392. DOI: https://doi.org/10.1109/TIP.2018.2801119
  • [12] H. Shi, M. Xu, R. Li, Deep Learning for Household Load Forecasting ‒ A Novel Pooling Deep RNN, IEEE Transactions on Smart Grid 9/5 (2018) 5271-5280. DOI: https://doi.org/10.1109/TSG.2017.2686012
  • [13] H. Yang, G. Xu, S. Yi, Y. Li, A New Cooperative Deep Learning Method for Underwater Acoustic Target Recognition, Proceedings of the Conference “OCEANS 2019”, Marseille, 2019, 1-4. DOI: https://doi.org/10.1109/OCEANSE.2019.8867490
  • [14] J. Akbar, M. Shahzad, M.I. Malik, A. Ul-Hasan, F. Shafait, Runway Detection and Localization in Aerial Images Using Deep Learning, Proceedings of the Conference Digital Image Computing: Techniques and Applications “DICTA”, Perth, 2019, 1-19. DOI: https://doi.org/10.1109/DICTA47822.2019.8945889
  • [15] P. Parvathi, T.S. Jyothis, Identifying relevant text from text document using deep learning, Proceedings of the International Conference on Circuits and Systems in Digital Enterprise Technology “ICCSDET”, Kottayam, 2018, 1-4. DOI: https://doi.org/10.1109/ICCSDET.2018.8821192
  • [16] X. Bai, Text classification based on LSTM and attention, Proceedings of the 13th International Conference on Digital Information Management “ICDIM”, Berlin, 2018, 29-32. DOI: https://doi.org/10.1109/ICDIM.2018.8847061
  • [17] C. Li, G. Zhan, Z. Li, News Text Classification Based on Improved Bi-LSTM-CNN, Proceedings of the 9th International Conference on Information Technology in Medicine and Education “ITME”, Hangzhou, 2018, 890-893. DOI: https://doi.org/10.1109/ITME.2018.00199
  • [18] C.T.C. Arsene, R. Hankins, H. Yin, Deep Learning Models for Denoising ECG Signals, Proceedings of the 27th European Signal Processing Conference “EUSIPCO”, A Coruna, 2019, 1-5. DOI: https://doi.org/10.23919/EUSIPCO.2019.8902833
  • [19] J.W. Pak, M.K. Kim, Convolutional Neural Network Approach for Aircraft Noise Detection, Proceedings of the International Conference on Artificial Intelligence in Information and Communication “ICAIIC”, Okinawa, 2019, 430-434. DOI: https://doi.org/10.1109/ICAIIC.2019.8669006
  • [20] J. Ren, R. Ren, M. Green, X. Huang, A Deep Learning Method for Fault Detection of Autonomous Vehicles, Proceedings of the 14th International Conference on Computer Science & Education “ICCSE”, Toronto, 2019, 749-754. DOI: https://doi.org/10.1109/ICCSE.2019.8845483
  • [21] N. Sanil, P.A.N. Venkat, V. Rakesh, R. Mallapur, M.R. Ahmed, Deep Learning Techniques for Obstacle Detection and Avoidance in Driverless Cars, International Conference on Artificial Intelligence and Signal Processing “AISP”, Amaravati, 2020, 1-4. DOI: https://doi.org/10.1109/AISP48273.2020.9073155
  • [22] S. Zhang, X. Pan, Y. Cui, X. Zhao, L. Liu, Learning Affective Video Features for Facial Expression Recognition via Hybrid Deep Learning, IEEE Access 7 (2019) 32297-32304. DOI: https://doi.org/10.1109/ACCESS.2019.2901521
  • [23] Y. Liu, X. Xu, Image Feature Matching Based on Deep Learning, Proceedings of the IEEE 4th International Conference on Computer and Communications “ICCC”, Chengdu, 2018, 1752-1756. DOI: https://doi.org/10.1109/CompComm.2018.8780936
  • [24] N.K. Mudaliar, K. Hegde, A. Ramesh, V. Patil, Visual Speech Recognition: A Deep Learning Approach, Proceedings of the 5th International Conference on Communication and Electronics Systems “ICCES 2020”, 2020, Coimbatore, 1218-1221. DOI: https://doi.org/10.1109/ICCES48766.2020.9137926
  • [25] M.K. Sharma, P. Kumar, A. Rasool, A. Dubey, V.K. Mahto, Classification of Actual and Fake News in Pandemic, Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) “I-SMAC”, Palladam, 2021, 1168-1174. DOI: https://doi.org/10.1109/I-SMAC52330.2021.9640639
  • [26] P. Vyas, F. Sharma, A. Rasool, A. Dubey, Supervised Multimodal Emotion Analysis of Violence on Doctors Tweets, Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) “I-SMAC”, Palladam, 2021, 962-967. DOI: https://doi.org/10.1109/I-SMAC52330.2021.9640732
  • [27] A.M. Aromal, A. Rasool, A. Dubey, B.N. Roy, Optimized Weighted Samples Based Semi- Supervised Learning, Proceedings of the 2nd International Conference on Electronics and Sustainable Communication Systems “ICESC”, Coimbatore, 2021, 1311-1318. DOI: https://doi.org/10.1109/ICESC51422.2021.9532994
  • [28] V.S. Charan, A. Rasool, A. Dubey, Stock closing price forecasting using machine learning models, Proceedings of the International Conference for Advancement in Technology “ICONAT”, Goa, 2022, 1-7. DOI: https://doi.org/10.1109/ICONAT53423.2022.9725964
  • [29] A. Soni, A. Rasool, A. Dubey, N. Khare, Data mining based dimensionality reduction techniques, Proceedings of the International Conference for Advancement in Technology ICONAT”, Goa, 2022, 1-8. DOI: https://doi.org/10.1109/ICONAT53423.2022.9725846
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0777d754-d51f-4640-8245-6b400a1bb947
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.