PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ti13Nb13Zr alloy was subjected to laser modification with the Nd:YAG laser provided that such treatment would increase the surface roughness followed improved adhesion of hydroxyapatite (HAp) coatings The hydroxyapatite was deposited by electrophoretic method in suspension of 0.5 g HA powder and 100 ml ethyl alcohol. The deposition was carried out for 10 min at 10 V voltage followed by drying at room temperature for 24 h and heating at 800°C for 1 h in vacuum. The thickness of the HAp coatings was found as of about 4.06 μm to 9.05 μm. The examinations of surfaces were carried out at each stage of the experiment with the ultra-high resolution scanning electron microscope. The measurements of surface roughness after laser treatment and after HAp deposition were performed with the Hommel Etamic Waveline profilograph.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, Gdansk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, Gdansk, Poland
Bibliografia
  • 1. Zielinski A., Sobieszczyk S., Seramak T., Serbinski W., Swieczko-Zurek B., Ossowska A.: Biocompatibility and bioactivity of load-bearing metallic implants, Adv. Mater. Sci. 10 (2011) 21–31.
  • 2. Wang D., Wu G., Lin X. Liu Y.: Surface coating and modification of metallic biomaterials (2015) 345–358.
  • 3. Palanivelu R., Kalainathan S., Kumar A.: Characterization studies on plasma sprayed (AT/HA) bi-layered nanoceramics coating on biomedical commercially pure titanium dental implant, Ceram. Int. 40 (2014) 7745–7751.
  • 4. Vasilescu C., Drob P., Vasilescu E., Demetrescu I., Ionita D., Prodana M., Drob S.: Characterization and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti-6Al- 4V-1Zr alloy surface, Corros. Sci. 53 (2011) 992–999.
  • 5. Barry J. N., Twomey, B., Cowley, A., O'Neill, L., McNally, P.J., Dowling, D.P.: Evaluation and comparison of hydroxyapatite coatings deposited using both thermal and non-thermal techniques, Surface and Coatings Technology 226 (2013) 82 – 91.
  • 6. Mohseni E., Zalnezhad E., Bushroa A. R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant, International Journal of Adhesion & Adhesives 48 (2014) 238 – 257.
  • 7. Fernandez-Pradas J.M. et all.: Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355 nm; influence of thickness, Biomaterials 23 (2002) 1989 – 1894.
  • 8. Kwok C.T. et al.: Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 255 (2009) 6736–6744.
  • 9. Meng X., Tae-Yub Kwon T.-Y., Kim K.-H.: Hydroxyapatite coating by electrophoretic deposition at dynamic voltage, Dental Materials Journal 27(5) (2008) 666-671.
  • 10. Bartmanski M., Cieslik B., Glodowska J., Kalka P., Pawlowski L, Pieper M., Zielinski A.: Electrophoretic deposition (EPD) of nanohydroxyapatite – nanosilver coatings on Ti13Zr13Nb alloy, Ceramics International 43 (15) (2017) 11820-11829.
  • 11. Bartmanski M., Berk A., Wojcik A.: Advances in Materials Science 16 No. 3 (49) (2016) 56 – 66.
  • 12. Wennerberg A., Albrektson T.: Effects of titanium surface topography on bone integration: a systematic review, Clin. Oral Implants Res. 20 (4) 2009) 172 – 184.
  • 13. Le Guéhennec L., Soueidan A., Layrolle P., Amouriq Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23 (2007) 844 – 854.
  • 14. Schuler M., Owen G.R., Hamilton D.W., de Wild M., Textor M., Brunette D.M., Tosatti S.G.: Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study, Biomaterials 27 (21) (2006) 4003 – 4015.
  • 15. Zieliński A., Jażdżewska M., Łubiński J., Serbiński W.: Effects of laser remelting at cryogenic conditions on microstructure and wear resistance of the Ti6Al4V alloy applied in medicine, Solid State Phenomena 183 (2012) 215 – 224.
  • 16. Majkowska B., Jażdżewska M., Wołowiec E., Piekoszewski W., Klimek L., Zieliński A.: The possibility of use of laser-modified Ti6Al4V alloy in friction pairs in endoprostheses, Archives of Metallurgy and Materials 60 (2) (2015) 755–758.
  • 17. Oliver W.C., Pharr G.M.Ł: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19 (2004) 3 – 20.
  • 18. Feng B., Weng J., Yang B.C., Qu S.X., Zhang X.D.: Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials 24 (2003) 4663–4670.
  • 19. Gross K.A., Babovic M.: Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings, Biomaterials 23 (2002) 4731–4737.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0777575f-d900-400a-9327-4038c71efdf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.