PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actual Status Assessment and Prediction of the Musi River Water Quality, Palembang, South Sumatra, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water pollution in rivers is still a crucial problem for the countries that use river water as the primary water source. This study aimed to determine the water quality of the Musi river and the content of heavy metals in water, sediment and mussels as well as to predict the water quality of the Musi river in the next five years. The water samples were taken from 18 stations (sampling points) from upstream to downstream to be checked physically, chemically and biologically. Prediction of the river water quality was made using the QUAL2Kw software. The research results show that the Musi River water is categorized as lightly polluted with concentrations of TSS and DO that have passed the threshold. The heavy metals in river water, such as Pb and Cr have also passed the quality standard. The Fe, Mn, and Zn concentrations are pretty high in the sediment. In turn, in mussels, the metals measured were Fe, Cu, and Zn. The prediction results reveal that several values of the river quality parameters will pass the threshold value with the same pattern tendency from each station.
Rocznik
Strony
68--79
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Doctoral Program of Environmental Science, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang 30139, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
  • Mining Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang- Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
  • Department of Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
Bibliografia
  • 1. Abdel-gawad S.A., Morsi M.S., Aziz H.M.A. 2017. Adsorption Study for Chemical Oxygendemand Removal From Aqueous Solutions Using Alginate beads with entrapped activated carbon, 37(4), 8–16.
  • 2. Adilah A.A.G.N., Nadia H.N. 2020. Water Quality Status and Heavy Metal Contains in Selected Rivers at Tasik Chini due to Increasing Land Use Activities. IOP Conference Series: Materials Science and Engineering, 712(1). https://doi.org/10.1088/1757–899X/712/1/012022
  • 3. Anyanwu E.D., Okorie M.C., Odo S.N. 2019. Macroinvertebrates as bioindicators of Water Quality of Effluent-receiving Ossah River, Umuahia, Southeast Nigeria. Zanco Journal of Pure and Applied Sciences, 31(5). https://doi.org/10.21271/zjpas.31.5.2
  • 4. Azizi G., Akodad M., Baghour M., Layachi M., Moumen A. 2018. The use of Mytilus spp. mussels as bioindicators of heavy metal pollution in the coastal environment. A review. Journal of Materials and Environmental Sciences, 9(4), 1170–1181.
  • 5. Baensch-Baltruschat B., Kocher B., Kochleus C., Stock F., Reifferscheid G. 2021. Tyre and road wear particles – A calculation of generation, transport and release to water and soil with special regard to German roads. Science of the Total Environment, 752, 141939. https://doi.org/10.1016/j.scitotenv.2020.141939
  • 6. Bai Y., Wang Q., Yang Y. 2022. From Pollution Control Cooperation of Lancang-Mekong River to “Two Mountains Theory.” Sustainability (Switzerland), 14(4). https://doi.org/10.3390/su14042392
  • 7. Beltaos S., Burrell B.C. 2021. Effects of river-ice breakup on sediment transport and implications to stream environments: A review. Water (Switzerland), 13(18). https://doi.org/10.3390/w13182541
  • 8. Bhaskar M., Dixit A.K. 2013. Water Quality Appraisal of Hasdeo River at Korba in Chhattisgarh, India. International Journal of Science and Research (IJSR), 4(9), 1252–1258.
  • 9. Cui S., Zhang F., Hu P., Hough R., Fu Q., Zhang Z., An L., Li Y. F., Li K., Liu D., Chen P. 2019. Heavy metals in sediment from the urban and rural rivers in Harbin City, Northeast China. International Journal of Environmental Research and Public Health, 16(22), 1–15. https://doi.org/10.3390/ijerph16224313
  • 10. EL-Shenawy N.S., Loutfy N., Soliman M.F.M., Tadros M.M., Abd El-Azeez A.A. 2016. Metals bioaccumulation in two edible bivalves and health risk assessment. Environmental Monitoring and Assessment, 188(3), 1–12. https://doi.org/10.1007/s10661–016–5145–2
  • 11. Gabbud C., Lane S.N. 2016. Ecosystem impacts of Alpine water intakes for hydropower: the challenge of sediment management. Wiley Interdisciplinary Reviews: Water, 3(1), 41–61. https://doi.org/10.1002/wat2.1124
  • 12. Hill N.A., Simpson S.L., Johnston E.L. 2013. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata. Environmental Pollution, 173, 182–191. https://doi.org/10.1016/j.envpol.2012.09.029
  • 13. Jordanova M., Hristovski S., Musai M., Boškovska V., Rebok K., Dinevska-Ќovkarovska S., Melovski L. 2018. Accumulation of Heavy Metals in Some Organs in Barbel and Chub from Crn Drim River in the Republic of Macedonia. Bulletin of Environmental Contamination and Toxicology, 101(3), 392–397. https://doi.org/10.1007/s00128–018–2409–2
  • 14. Kumar V., Singh J., Kumar P., Kumar P. 2019. Response surface methodology based electro-kinetic modeling of biological and chemical oxygen demand removal from sugar mill effluent by water hyacinth (Eichhornia crassipes) in a Continuous Stirred Tank Reactor (CSTR). Environmental Technology and Innovation, 14, 100327. https://doi.org/10.1016/j.eti.2019.100327
  • 15. Liang Y.Q., Annammala K.V., Martin P., Yong E.L., Mazilamani L.S., Najib M.Z.M. 2020. Assessment of physical-chemical water quality characteristics and heavy metals content of lower johor river, Malaysia. Journal of Environmental Treatment Techniques, 8(3), 961–966.
  • 16. Liu M., Zhong J., Zheng X., Yu J., Liu D., Fan C. 2018. Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environmental Science and Pollution Research, 25(10), 9737–9744. https://doi.org/10.1007/s11356–018–1249–2
  • 17. Mailisa E.R, Yulianto B., Warsito B. 2020. Water quality condition of sani river as source of drinking water of pdam tirta bening in pati regency. E3S Web of Conferences, 202. https://doi.org/10.1051/e3sconf/202020206040
  • 18. Null S.E., Mouzon N.R., Elmore L.R. 2017. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases. Journal of Environmental Management, 197, 559–570. https://doi.org/10.1016/j.jenvman.2017.04.016
  • 19. Ode L., Afu A., Luturmas A. 2022. Content of heavy metals lead (Pb) and cadmium (Cd) in sediments in Tanjung Oyster waters, Selatan Konawe. Journal of Fish Health, 2(June), 8–13. https://doi.org/10.29303/jfh.v2i1.3167 CONTENT
  • 20. Oliveira G.F.M., Couto M.C.M. do, Lima M. de F., Bomfim T.C.B. do. 2016. Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. International Journal for Parasitology: Parasites and Wildlife, 5(1), 28–33. https://doi.org/10.1016/j.ijppaw.2016.01.004
  • 21. Patandung H., Arsyad U., Wahyuni, Soma A. S., Amaliah R. 2021. Water quality in various land cover type in nanggala sub watershed. IOP Conference Series: Earth and Environmental Science, 870(1). https://doi.org/10.1088/1755–1315/870/1/012027
  • 22. Piatka D.R., Wild R., Hartmann J., Kaule R., Kaule L., Gilfedder B., Peiffer S., Geist J., Beierkuhnlein C., Barth J.A.C. 2021. Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review. Earth-Science Reviews, 220(December 2020), 103729. https://doi.org/10.1016/j.earscirev.2021.103729
  • 23. Ponce-Palafox J.T., Pavia Á.A., Mendoza López D.G., Arredondo-Figueroa J.L., Lango-Reynoso F., Castañeda-Chávez M. del R., Esparza-Leal H., Ruiz-Luna A., Páez-Ozuna F., Castillo-Vargasmachuca S.G., Peraza-Gómez V. 2019. Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, 503(October 2018), 312–321. https://doi.org/10.1016/j.aquaculture.2019.01.020
  • 24. Pradono P., Syabri I., Shanty Y.R., Fathoni M. 2019. Comparative analysis on integrated coal transport models in South Sumatra. Journal of Environmental Treatment Techniques, 7(4), 696–704.
  • 25. Putri M.K., Nuranisa N., Mei E.T.W., Giyarsih S.R., Sukmaniar S., Saputra W. 2021. The characteristics of ethnics people at the banks of musi river in palembang. IOP Conference Series: Earth and Environmental Science, 683(1). https://doi.org/10.1088/1755–1315/683/1/012121
  • 26. Rahmanian N., Ali S.H.B., Homayoonfard M., Ali N.J., Rehan M., Sadef Y., Nizami A.S. 2015. Analysis of physiochemical parameters to evaluate the drinking water quality in the state of perak, Malaysia. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/716125
  • 27. Rusdiyanto E., Sitorus S.R.P., Noorachmat B.P., Sobandi R. 2021. Assessment of the Actual Status of the Cikapundung River Waters in the Densely-Inhabited Slum Area, Bandung City. Journal of Ecological Engineering, 22(11), 198–208. https://doi.org/10.12911/22998993/142916
  • 28. Samal K., Kar S., Trivedi S. 2019. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. Journal of Environmental Management, 251, 109550. https://doi.org/10.1016/j.jenvman.2019.109550
  • 29. Saravanan A., Senthil Kumar P., Jeevanantham S., Karishma S., Tajsabreen B., Yaashikaa P.R., Reshma B. 2021. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. https://doi.org/10.1016/j.chemosphere.2021.130595
  • 30. Sharma R., Vymazal J., Malaviya P. 2021. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Science of the Total Environment, 777, 146044. https://doi.org/10.1016/j.scitotenv.2021.146044
  • 31. Shyleshchandran M.N., Mohan M., Ramasamy E.V. 2018. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environmental Science and Pollution Research, 25(8), 7333–7345. https://doi.org/10.1007/s11356–017–0997–8
  • 32. Syakti A.D., Demelas C., Hidayati N.V., Rakasiwi G., Vassalo L., Kumar N., Prudent P., Doumenq P. 2015. Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environmental Monitoring and Assessment, 187(1). https://doi.org/10.1007/s10661–014–4079–9
  • 33. Wang H., Feng C., Deng Y. 2020. Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic denitrification system. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.134830
  • 34. Wibowo M.J., Winarno W., Hariono B., Wijaya R. 2021. Evaluation of Kalibomo watershed water quality using the storet method. IOP Conference Series: Earth and Environmental Science, 672(1). https://doi.org/10.1088/1755–1315/672/1/012015
  • 35. Wojtkowska M., Bojanowski D. 2018. Influence of catchment use on the degree of river water pollution by forms of phosphorus. Rocznik Ochrona Srodowiska, 20, 887–904.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07768c94-7b83-47d7-960b-4a55081ea807
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.