PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pitch Processing of Speech : Comparison of Psychoacoustic and Electrophysiological Data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study consisted of two experiments. The goal of the first experiment was to establish the just noticeable differences for the fundamental frequency of the vowel /u/ by using the 2AFC method. We obtained the threshold value for 27 cents. This value is larger than the motor reaction values which had been observed in previous experiments (e.g. 9 or 19 cents). The second experiment was intended to provide neurophysiological confirmation of the detection of shifts in a frequency, using event-related potentials (ERPs). We concentrated on the mismatch negativity (MMN) - the component elicited by the change in the pattern of stimuli. Its occurrence is correlated with the discrimination threshold. In our study, MMN was observed for changes greater than 27 cents - shifts of ±50 and 100 cents (effect size - Cohen’s d = 2.259). MMN did not appear for changes of ±10 and 20 cents. The results showed that the values for which motor responses can be observed are indeed lower than those for perceptual thresholds.
Rocznik
Strony
375--381
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Institute of Psychology, Adam Mickiewicz University Szamarzewskiego 89, 60-568 Poznań, Poland
  • Institute of Psychology, Adam Mickiewicz University Szamarzewskiego 89, 60-568 Poznań, Poland
autor
  • Institute of Acoustics, Adam Mickiewicz University Umultowska 85, 61-614 Poznań, Poland
autor
  • Department of Biophysics, Poznań University of Medical Sciences Fredry 10, 61-701 Poznań, Poland
autor
  • Institute of Acoustics, Adam Mickiewicz University Umultowska 85, 61-614 Poznań, Poland
autor
  • Institute of Psychology, Cognitive Science Program, Head, Action, Cognition Laboratory, Adam Mickiewicz University Szamarzewskiego 89B, 60-568 Poznań, Poland
Bibliografia
  • 1. American National Standards Inst. (1996), ANSI S3.6-1996, Specifications for Audiometers, American National Standards Institute, New York.
  • 2. Blauert J. (2012), A perceptionist’s view on psychoacoustics, Arch. Acoust., 37, 3, 365-372.
  • 3. Blauert J., Jekosch U. (2012), A Layer Model of Sound Quality, J. Audio Eng. Soc., 60, 1/2, 412.
  • 4. Burnett T.A., Freedland M.B., Larson C.R., Hain T.C. (1998), Voice F0 responses to manipulations in pitch feedback, J. Acoust. Soc. Am., 103, 6, 3153-3161.
  • 5. Burnett T.A., Larson C.R. (2002), Early pitch shift response is active in both steady and dynamic voice pitch control, J. Acoust. Soc. Am., 112, 1058-1063.
  • 6. Chen S.H., Liu H., Xu Y., Larson C.R. (2007), Voice F0 responses to pitch-shifted voice feedback during English speech, J. Acoust. Soc. Am., 121, 1157-1163.
  • 7. Donath T.M., Natke U., Kalveram K.T. (2002), Effects of frequency-shifted auditory feedback on voice F0 contours in syllables, J. Acoust. Soc. Am., 111, 357-366.
  • 8. Goodale M.A., Milner M.A. (2004), Sight Unseen : An Exploration of Conscious and Nonconscious Vision, Oxford University Press, Oxford.
  • 9. Hafke H.Z. (2008), Nonconscious control of fundamental voice frequency, J. Acoust. Soc. Am., 123, 1, 273-278.
  • 10. Hafke H.Z. (2009), Nonconscious control of voice intensity during vocalization, Archives of Acoustics, 34, 4, 407-414.
  • 11. Hain T.C., Burnett T.A., Kiran S., Larson C.R., Singh S., Kenney M.K. (2000), Instructing subjects to make a voluntary response reveals the presence of two components to the audio-vocal reflex, Exp. Brain Res., 130, 133-141.
  • 12. Hawco C.S., Jones J.A., Ferretti T.R., Keough D. (2009), ERP correlates of online monitoring of auditory feedback during vocalization, Psychophysiology, 46, 1216-1225.
  • 13. Hickok G., Poeppel D. (2004), Dorsal and ventral pathways: a framework for understanding aspects of the functional anatomy of language, Cognition, 92, 1-2, 67-99.
  • 14. Jasper H.H. (1958), Report of the Committee on Methods of Clinical Examination in Electroencephalography, Electroenceph. Clin. Neurophysiol., 10, 370-371.
  • 15. Jones J.A., Keough D. (2009), The sensitivity of auditory motor representations to subtle changes in auditory feedback while singing, J. Acoust. Soc. Am., 126, 2, 837-846.
  • 16. Kingdom F.A.A., Prins N. (2010) Psychophysics : A practical introduction, Amsterdam: Academic Press.
  • 17. Laroche J., Dolson M. (1999), New Phase-Vocoder Techniques are Real-Time Pitch Shifting, Chorusing, Harmonizing, and Other Exotic Audio Modifications, JAES, 47, 11, 928-936.
  • 18. Larson C.R. (1998), Cross-modality influences in speech motor control: The use of pitch shifting for the study of F0 control, J. Commun. Disorders, 31, 489-503.
  • 19. Larson C.R., White J.P., Freedland M.B., Burnett T.A. (1996), Interactions Between Voluntary Modulations and Pitch-Shifted Feedback Signals: Implications for Neural Control of Voice Pitch, [in:] Vocal Fold Physiology: Controlling Complexity and Chaos, P.J. Davis and N.H. Fletcher [Eds.], pp. 279-289, Singular, San Diego.
  • 20. Liu H., Larson C.R. (2007), Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex, J. Acoust. Soc. Am., 122, 6, 3671-3677.
  • 21. Luck S. (2005), An Introduction to the Event-Related Potential Technique, MIT Press, Massachusetts Institute of Technology.
  • 22. Milner A.D., Goodale M.A. (1995), The Visual Brain in Action, Oxford University Press, Oxford.
  • 23. Natke U., Donath T.M., Kalveram K.T. (2003), Control of voice fundamental frequency in speaking versus singing, J. Acoust. Soc. Am., 113, 3, 1587-1593.
  • 24. Natke U., Kalveram K.T. (2001), Effects of frequency-shifted auditory feedback on fundamental frequency of long stressed and unstressed syllables, J. Speech Lang. Hear. Res., 44, 577-584.
  • 25. Näätänen R., Gaillard A.W.K., Mäntysalo S. (1978), Early selective-attention effect on evoked potential reinterpreted, Acta Psychologica, 42, 313-329.
  • 26. Näätänen R., Alho K. (1995), Mismatch negativity the unique measure of sensory processing in audition, International Journal of Neuroscience, 80, 317-337.
  • 27. Näätänen R., Pääviläinen P., Rinne T., Alho K. (2007), The mismatch negativity (MMN) in basic research of central auditory processing: A review, Clin. Neurophysiol., 118, 2544-2590.
  • 28. Picton T.W., Alain C., Otten L., Ritter W., Achim A. (2000), Mismatch negativity: Different water in the same river, Audiology and Neurootology, 5, 111-139.
  • 29. Repp B.H. (2000), Compensation for subliminal timing perturbations in perceptual-motor synchronization, Psychological Research, 63, 106-128.
  • 30. Repp B.H. (2006), Does an auditory perceptual illusion affect on-line auditory action control? The caseof (de)accentuation and synchronization, Exp. Brain Res., 168, 493-504.
  • 31. Sivasankar M., Bauer J.J., Babu T., Larson C.R. (2005), Voice responses to changes in pitch of voice or tone auditory feedback, J. Acoust. Soc. Am., 117, 2, 850-857.
  • 32. Ungerleider L.G., Mishkin M. (1982), Two cortical visual systems. Analysis of visual behavior, [in:] Analysis of Visual Behavior, Ingle D.J., Goodale M.A., Mansfield R.J.W. [Eds.], pp. 549-586, MIT Press, Cambridge.
  • 33. Warren J.E., Wise R.J.S., Warren J.D. (2005), Sounds doable: auditory-motor transformations and the posterior temporal plane, Trends in Neurosciences, 28, 12, 636-643.
  • 34. Xu Y., Larson C.R., Bauer J.J., Hain T.C. (2004), Compensation for pitch-shifted auditory feed-back during the production of Mandarin tone sequences, J. Acoust. Soc. Am., 116, 2, 1168-1178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0773a68b-0596-4d0b-8f6d-cc7e6bb55b29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.